Numerical modeling of spillway aerators in high-head dams

Autor: Ercan Işik, A. Emre Ulu, M. Cihan Aydin
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Applied Water Science, Vol 10, Iss 1, Pp 1-9 (2020)
ISSN: 2190-5495
2190-5487
Popis: Due to high flow velocity, the spillway surfaces of high-head dams can expose to cavitational damage. The most effective and economical method of protection from this damage is aerated to flow using aerators. In this study, a spillway aerator of the roller-compacted concrete dam of 100 m height was analyzed using two-phase computational fluid dynamic model to overcome the cavitation damage on the spillway surface. The numerical analysis with prototype dimensions was performed for various flow conditions (5223, 3500, 1750 and 1000 m3/s of flow rate), and obtained results were compared with some experimental observation in the literature. Numerical and experimental results indicated that the cavitation occurs on the surface after a certain downstream point based on cavitation indices. The air entrainment rate and air concentrations supplied by means of the aerator were determined to avoid the cavitational damage. While the experimental results can contain considerable scale effect in terms of air entrainment rate owing to, e.g., viscous effects especially for small scales, the numerical models with prototype dimensions gave much more accurate results. In other words, it can be also mentioned that the actual aeration amount is much greater than that obtained from the model experiments. The results based on numerical analysis showed that the aerator device meet air demand to prevent the cavitation damage.
Databáze: OpenAIRE