Empowering Advanced Parametric Modes Clustering from Topological Data Analysis

Autor: Tarek Frahi, Baptiste Vinh Mau, Antonio Falcó, Francisco Chinesta, Jean Louis Duval
Přispěvatelé: UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas, Producción Científica UCH 2021, Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM), Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Universidad Cardenal Herrera-CEU (CEU-UCH), ESI Group (ESI Group)
Rok vydání: 2021
Předmět:
Optimal design
Technology
Topology
Dynamical systems theory
QH301-705.5
Superficies (Matemáticas)
Deformaciones (Mecánica)
Computer science
QC1-999
Modal analysis
Data analysis
02 engineering and technology
Topología
Sciences de l'ingénieur
01 natural sciences
topological data analysis
[SPI]Engineering Sciences [physics]
0203 mechanical engineering
Surfaces
Applied mathematics
General Materials Science
Biology (General)
0101 mathematics
QD1-999
Instrumentation
Eigenvalues and eigenvectors
Parametric statistics
Fluid Flow and Transfer Processes
Basis (linear algebra)
Physics
Process Chemistry and Technology
General Engineering
Análisis de datos
structural dynamics
Engineering (General). Civil engineering (General)
modal analysis
Orthogonal basis
Computer Science Applications
010101 applied mathematics
Chemistry
Deformations (Mechanics)
020303 mechanical engineering & transports
NVH
Topological data analysis
TA1-2040
Zdroj: CEU Repositorio Institucional
Fundación Universitaria San Pablo CEU (FUSPCEU)
Applied Sciences, Vol 11, Iss 6554, p 6554 (2021)
Applied Sciences
Applied Sciences, MDPI, 2021, 11 (14), pp.6554. ⟨10.3390/app11146554⟩
Volume 11
Issue 14
ISSN: 2076-3417
DOI: 10.3390/app11146554
Popis: Este artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/2076-3417/11/14/6554 Modal analysis is widely used for addressing NVH—Noise, Vibration, and Hardness—in automotive engineering. The so-called principal modes constitute an orthogonal basis, obtained from the eigenvectors related to the dynamical problem. When this basis is used for expressing the displacement field of a dynamical problem, the model equations become uncoupled. Moreover, a reduced basis can be defined according to the eigenvalues magnitude, leading to an uncoupled reduced model, especially appealing when solving large dynamical systems. However, engineering looks for optimal designs and therefore it focuses on parametric designs needing the efficient solution of parametric dynamical models. Solving parametrized eigenproblems remains a tricky issue, and, therefore, nonintrusive approaches are privileged. In that framework, a reduced basis consisting of the most significant eigenmodes is retained for each choice of the model parameters under consideration. Then, one is tempted to create a parametric reduced basis, by simply expressing the reduced basis parametrically by using an appropriate regression technique. However, an issue remains that limits the direct application of the just referred approach, the one related to the basis ordering. In order to order the modes before interpolating them, different techniques were proposed in the past, being the Modal Assurance Criterion—MAC—one of the most widely used. In the present paper, we proposed an alternative technique that, instead of operating at the eigenmodes level, classify the modes with respect to the deformed structure shapes that the eigenmodes induce, by invoking the so-called Topological Data Analysis—TDA—that ensures the invariance properties that topology ensure.
Databáze: OpenAIRE