CINeMA: An approach for assessing confidence in the results of a network meta-analysis

Autor: Matthias Egger, Theodoros Papakonstantinou, Adriani Nikolakopoulou, Cinzia Del Giovane, Julian P T Higgins, Anna Chaimani, Georgia Salanti
Přispěvatelé: Institute of Social and Preventive Medicine [Bern] (ISPM), Universität Bern [Bern] (UNIBE), University of Bristol [Bristol], Centre de Recherche Épidémiologie et Statistique Sorbonne Paris Cité (CRESS (U1153 / UMR_A_1125 / UMR_S_1153)), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Université Sorbonne Paris Cité (USPC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Cochrane France [Paris], University of Bern, Institute of Primary Health Care, The development of the software and part of the presented work was supported by the Cochrane Collaboration and the Campbell Collaboration. GS, AN, TP were supported by project funding (Grant No. 179158) from the Swiss National Science Foundation. ME was supported by special project funding (Grant No. 174281) from the Swiss National Science Foundation., Bodescot, Myriam, Universität Bern [Bern], Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Université Sorbonne Paris Cité (USPC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Computer science
Network Meta-Analysis
Coronary Artery Disease
030204 cardiovascular system & hematology
computer.software_genre
Vascular Medicine
Diagnostic Radiology
Guidelines and Guidance
Electrocardiography
Mathematical and Statistical Techniques
0302 clinical medicine
Credibility
Medicine and Health Sciences
Coronary Heart Disease
030212 general & internal medicine
610 Medicine & health
Randomized Controlled Trials as Topic
Radiology and Imaging
Statistics
Drugs
General Medicine
Transparency (human–computer interaction)
Metaanalysis
Magnetic Resonance Imaging
Bioassays and Physiological Analysis
Reporting bias
Research Design
Meta-analysis
Physical Sciences
Medicine
Network Analysis
360 Social problems & social services
Computer and Information Sciences
Imaging Techniques
Clinical Research Design
Process (engineering)
Cardiology
Magnetic Resonance Imaging
Cine

Research and Analysis Methods
Machine learning
03 medical and health sciences
Diagnostic Medicine
Confidence Intervals
Humans
Web application
Statistical Methods
Pharmacology
business.industry
Electrophysiological Techniques
Statins
Confidence interval
[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie
Exercise Test
Key (cryptography)
[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie
Cardiac Electrophysiology
Adverse Events
Artificial intelligence
business
computer
Mathematics
Zdroj: PLoS Medicine
PLoS Medicine, Public Library of Science, 2020, 17 (4), pp.e1003082. ⟨10.1371/journal.pmed.1003082⟩
Nikolakopoulou, Adriani; Higgins, Julian P T; Papakonstantinou, Theodoros; Chaimani, Anna; Del Giovane, Cinzia; Egger, Matthias; Salanti, Georgia (2020). CINeMA: An approach for assessing confidence in the results of a network meta-analysis. PLoS medicine, 17(4), e1003082. Public Library of Science 10.1371/journal.pmed.1003082
Nikolakopoulou, A, Higgins, J P T, Papakonstantinou, T, Chaimani, A, Del Giovane, C, Egger, M & Salanti, G 2020, ' CINeMA : An approach for assessing confidence in the results of a network meta-analysis ', PLoS Medicine, vol. 17, no. 4, e1003082 . https://doi.org/10.1371/journal.pmed.1003082
PLoS Medicine, Vol 17, Iss 4, p e1003082 (2020)
ISSN: 1549-1277
1549-1676
DOI: 10.1371/journal.pmed.1003082⟩
Popis: Background The evaluation of the credibility of results from a meta-analysis has become an important part of the evidence synthesis process. We present a methodological framework to evaluate confidence in the results from network meta-analyses, Confidence in Network Meta-Analysis (CINeMA), when multiple interventions are compared. Methodology CINeMA considers 6 domains: (i) within-study bias, (ii) reporting bias, (iii) indirectness, (iv) imprecision, (v) heterogeneity, and (vi) incoherence. Key to judgments about within-study bias and indirectness is the percentage contribution matrix, which shows how much information each study contributes to the results from network meta-analysis. The contribution matrix can easily be computed using a freely available web application. In evaluating imprecision, heterogeneity, and incoherence, we consider the impact of these components of variability in forming clinical decisions. Conclusions Via 3 examples, we show that CINeMA improves transparency and avoids the selective use of evidence when forming judgments, thus limiting subjectivity in the process. CINeMA is easy to apply even in large and complicated networks.
Adriani Nikolakopoulou and co-authors discuss CINeMA, an approach for evaluating the findings of network meta-analyses.
Databáze: OpenAIRE