CINeMA: An approach for assessing confidence in the results of a network meta-analysis
Autor: | Matthias Egger, Theodoros Papakonstantinou, Adriani Nikolakopoulou, Cinzia Del Giovane, Julian P T Higgins, Anna Chaimani, Georgia Salanti |
---|---|
Přispěvatelé: | Institute of Social and Preventive Medicine [Bern] (ISPM), Universität Bern [Bern] (UNIBE), University of Bristol [Bristol], Centre de Recherche Épidémiologie et Statistique Sorbonne Paris Cité (CRESS (U1153 / UMR_A_1125 / UMR_S_1153)), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Université Sorbonne Paris Cité (USPC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Cochrane France [Paris], University of Bern, Institute of Primary Health Care, The development of the software and part of the presented work was supported by the Cochrane Collaboration and the Campbell Collaboration. GS, AN, TP were supported by project funding (Grant No. 179158) from the Swiss National Science Foundation. ME was supported by special project funding (Grant No. 174281) from the Swiss National Science Foundation., Bodescot, Myriam, Universität Bern [Bern], Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Université Sorbonne Paris Cité (USPC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Computer science
Network Meta-Analysis Coronary Artery Disease 030204 cardiovascular system & hematology computer.software_genre Vascular Medicine Diagnostic Radiology Guidelines and Guidance Electrocardiography Mathematical and Statistical Techniques 0302 clinical medicine Credibility Medicine and Health Sciences Coronary Heart Disease 030212 general & internal medicine 610 Medicine & health Randomized Controlled Trials as Topic Radiology and Imaging Statistics Drugs General Medicine Transparency (human–computer interaction) Metaanalysis Magnetic Resonance Imaging Bioassays and Physiological Analysis Reporting bias Research Design Meta-analysis Physical Sciences Medicine Network Analysis 360 Social problems & social services Computer and Information Sciences Imaging Techniques Clinical Research Design Process (engineering) Cardiology Magnetic Resonance Imaging Cine Research and Analysis Methods Machine learning 03 medical and health sciences Diagnostic Medicine Confidence Intervals Humans Web application Statistical Methods Pharmacology business.industry Electrophysiological Techniques Statins Confidence interval [SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie Exercise Test Key (cryptography) [SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie Cardiac Electrophysiology Adverse Events Artificial intelligence business computer Mathematics |
Zdroj: | PLoS Medicine PLoS Medicine, Public Library of Science, 2020, 17 (4), pp.e1003082. ⟨10.1371/journal.pmed.1003082⟩ Nikolakopoulou, Adriani; Higgins, Julian P T; Papakonstantinou, Theodoros; Chaimani, Anna; Del Giovane, Cinzia; Egger, Matthias; Salanti, Georgia (2020). CINeMA: An approach for assessing confidence in the results of a network meta-analysis. PLoS medicine, 17(4), e1003082. Public Library of Science 10.1371/journal.pmed.1003082 Nikolakopoulou, A, Higgins, J P T, Papakonstantinou, T, Chaimani, A, Del Giovane, C, Egger, M & Salanti, G 2020, ' CINeMA : An approach for assessing confidence in the results of a network meta-analysis ', PLoS Medicine, vol. 17, no. 4, e1003082 . https://doi.org/10.1371/journal.pmed.1003082 PLoS Medicine, Vol 17, Iss 4, p e1003082 (2020) |
ISSN: | 1549-1277 1549-1676 |
DOI: | 10.1371/journal.pmed.1003082⟩ |
Popis: | Background The evaluation of the credibility of results from a meta-analysis has become an important part of the evidence synthesis process. We present a methodological framework to evaluate confidence in the results from network meta-analyses, Confidence in Network Meta-Analysis (CINeMA), when multiple interventions are compared. Methodology CINeMA considers 6 domains: (i) within-study bias, (ii) reporting bias, (iii) indirectness, (iv) imprecision, (v) heterogeneity, and (vi) incoherence. Key to judgments about within-study bias and indirectness is the percentage contribution matrix, which shows how much information each study contributes to the results from network meta-analysis. The contribution matrix can easily be computed using a freely available web application. In evaluating imprecision, heterogeneity, and incoherence, we consider the impact of these components of variability in forming clinical decisions. Conclusions Via 3 examples, we show that CINeMA improves transparency and avoids the selective use of evidence when forming judgments, thus limiting subjectivity in the process. CINeMA is easy to apply even in large and complicated networks. Adriani Nikolakopoulou and co-authors discuss CINeMA, an approach for evaluating the findings of network meta-analyses. |
Databáze: | OpenAIRE |
Externí odkaz: |