Influence of straight nozzle geometry on the supersonic under-expanded gas jets
Autor: | Alexandre Allou, Laurent Selle, Fang Chen, Quentin Douasbin, Jean-Denis Parisse |
---|---|
Přispěvatelé: | Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), École de l'air (FRANCE), Institut de Mécanique des Fluides de Toulouse - IMFT (Toulouse, France), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de mécanique des fluides de Toulouse (IMFT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Consiglio per la Ricerca in Agricoltura e l’analisi dell’economia agraria (CREA), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Consiglio per la Ricerca in Agricoltura e l’analisi dell’economia agraria = Council for Agricultural Research and Economics (CREA) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Nuclear and High Energy Physics
Materials science [PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] Mécanique des fluides Nozzle Under-expanded supersonic gas jets 02 engineering and technology [PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] 7. Clean energy 01 natural sciences 010305 fluids & plasmas law.invention 0203 mechanical engineering law Large-eddy simulation (LES) 0103 physical sciences Shock diamond Heat exchanger General Materials Science Supersonic speed Safety Risk Reliability and Quality Waste Management and Disposal Taylor-Görtler instability Under-expanded supersonic gas jets - Taylor-Görtler instability Mechanical Engineering Sodium Sodium-gas heat exchanger (SGHE) Sodium-gas heat exchanger (SGHE) - Large-eddy simulation (LES) Mechanics Nuclear reactor Transverse plane 020303 mechanical engineering & transports Supersonic jet Nuclear Energy and Engineering Stagnation pressure Large eddy simulation |
Zdroj: | Nuclear Engineering and Design Nuclear Engineering and Design, Elsevier, 2018, 339, ⟨10.1016/j.nucengdes.2018.09.003⟩ Nuclear Engineering and Design, 2018, 339, ⟨10.1016/j.nucengdes.2018.09.003⟩ |
ISSN: | 0029-5493 1872-759X |
DOI: | 10.1016/j.nucengdes.2018.09.003⟩ |
Popis: | International audience; The sodium-cooled fast nuclear reactor (SFR) is one of the most promising designs of the fourth generation (Gen IV) nuclear power reactors. Sodium-gas heat exchangers (SGHE) using nitrogen is being investigated as an alternative to improve operational safety associated with the use of steam Rankine cycles. This alternative eliminates the potential risk of chemical reactions. It is known that cracks inside an SGHE can cause the accidental leakage of nitrogen into the sodium-side. Due to the pressure difference between the secondary and tertiary loops, this nitrogen jet is therefore under-expanded. When the nitrogen leak is strong enough to flush the liquid sodium outside the SGHE channel, the nitrogen jet can be considered as single-phase. In this context, this work focuses on the influence of geometrical parameters of cracks (size, cross-section shape, transverse localization and inclination angle) on the impinging under-expanded nitrogen jet and its shock-wave system. A numerical study of impinging under-expanded nitrogen jet has been carried out using large eddy simulation (LES) technique. We applied a stagnation pressure upstream of the crack of 180 bar while the nozzle pressure ratio (NPR) ranged from 6.0 to 9.2. We were able to identify the link between the nozzle geometry and the Mach disk diameter and its localization. The vorticity distribution at the nozzle can be used to explain the structure of the jets and the entrainment. The central cross-section of the gas jet tends to turn 45° and 90° for square and rectangular cross-section nozzles respectively. The Taylor-Görtler instability is enhanced with a reduction in the nozzle diameter. These instabilities are also increased with square, rectangular and inclined nozzles. |
Databáze: | OpenAIRE |
Externí odkaz: |