Gravitational-wave luminosity distance in quantum gravity

Autor: Sylvain Marsat, Gianluca Calcagni, Nicola Tamanini, Sachiko Kuroyanagi, Gianmassimo Tasinato, Mairi Sakellariadou
Přispěvatelé: AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Ministerio de Ciencia, Innovación y Universidades (España), Japan Society for the Promotion of Science, Science and Technology Facilities Council (UK), SCOAP, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
High Energy Physics - Theory
Nuclear and High Energy Physics
Cosmology and Nongalactic Astrophysics (astro-ph.CO)
dispersion relation: correction
FOS: Physical sciences
Loop quantum gravity
General Relativity and Quantum Cosmology (gr-qc)
01 natural sciences
General Relativity and Quantum Cosmology
Theoretical physics
0103 physical sciences
quantum geometry
general relativity
black hole
LIGO
010306 general physics
Luminosity distance
Physics
Quantum geometry
LISA
010308 nuclear & particles physics
Gravitational wave
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
scaling
Observable
solar system
lcsh:QC1-999
gravitational radiation: luminosity
High Energy Physics - Theory (hep-th)
space-time
scale dependence
Group field theory
flow
neutron star: binary: coalescence
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
Quantum gravity
spin: foam
spin: 2
field theory: group
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
lcsh:Physics
quantum gravity: loop space
Astrophysics - Cosmology and Nongalactic Astrophysics
Zdroj: Phys.Lett.B
Phys.Lett.B, 2019, 798, pp.135000. ⟨10.1016/j.physletb.2019.135000⟩
Physics Letters B
Physics Letters B, Elsevier, 2019, 798, pp.135000. ⟨10.1016/j.physletb.2019.135000⟩
Digital.CSIC. Repositorio Institucional del CSIC
instname
Physics Letters B, Vol 798, Iss, Pp-(2019)
Physics Letters
ISSN: 0370-2693
DOI: 10.1016/j.physletb.2019.135000⟩
Popis: 5 pags., 1 fig., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0
Dimensional flow, the scale dependence of the dimensionality of spacetime, is a feature shared by many theories of quantum gravity (QG). We present the first study of the consequences of QG dimensional flow for the luminosity distance scaling of gravitational waves in the frequency ranges of LIGO and LISA. We find generic modifications with respect to the standard general-relativistic scaling, largely independent of specific QG proposals. We constrain these effects using two examples of multimessenger standard sirens, the binary neutron-star merger GW170817 and a simulated supermassive black-hole merger event detectable with LISA. We apply these constraints to various QG candidates, finding that the quantum geometries of group field theory, spin foams and loop quantum gravity can give rise to observable signals in the gravitational-wave spin-2 sector. Our results complement and improve GW propagation-speed bounds on modified dispersion relations. Under more model-dependent assumptions, we also show that bounds on quantum geometry can be strengthened by solar-system tests.
G.C. and S.K. are supported by the I+D grant FIS2017-86497-C2-2-P of the Spanish Ministry of Science, Innovation and Universities. S.K. is supported by JSPS KAKENHI No. 17K14282 and Career Development Project for Researchers of Allied Universities. M.S. is supported in part by STFC grant ST/P000258/1. G.T. is partially supported by STFC grant ST/P00055X/1.
Databáze: OpenAIRE