Existence and regularity of the solutions to degenerate elliptic equations in Carnot-Carathéodory spaces

Autor: Patrizia Di Gironimo, Flavia Giannetti
Přispěvatelé: DI GIRONIMO, P., Giannetti, F.
Rok vydání: 2020
Předmět:
Zdroj: Banach Journal of Mathematical Analysis. 14:1670-1691
ISSN: 1735-8787
2662-2033
DOI: 10.1007/s43037-020-00069-8
Popis: We deal with existence and regularity for weak solutions to Dirichlet problems of the type $$\begin{aligned} \left\{ \begin{array}{ll} - \mathrm{div} (A(x)Xu) +b(x)Xu + c(x)u=f\quad \hbox {in} \; \varOmega \\ \\ u=0 \quad \quad \hbox {on} \; \partial \varOmega . \end{array} \right. \end{aligned}$$ in a bounded domain $$\varOmega $$ of $${\mathbb {R}}^n, n\ge 2.$$ We assume that the matrix of the coefficients $$A(x)= {^tA(x)}$$ satisfies the anisotropic bounds $$\begin{aligned} \frac{|\xi |^2}{K(x)}\le \langle A(x) \xi , \xi \rangle \le K(x) |\xi |^2\quad \quad \forall \xi \in {\mathbb {R}}^n,\; \hbox {for a.e.} \; x\in \varOmega \end{aligned}$$ with the ellipticity function $$K(x)\in A_2\cap RH_{\tau }$$ , $$\tau $$ opportunely related to the homogeneous dimension. The functions b(x) and c(x) are assumed to belong to some weighted Lebesgue spaces.
Databáze: OpenAIRE