Rényi–Fisher entropy product as a marker of topological phase transitions
Autor: | Ágnes Nagy, Juan Carlos Bolívar, Elvira Romera |
---|---|
Rok vydání: | 2018 |
Předmět: |
Statistics and Probability
Physics Phase transition Charge neutrality Fizikai tudományok Position and momentum space 02 engineering and technology Electron 021001 nanoscience & nanotechnology Condensed Matter Physics Quantum number Topology 01 natural sciences Upper and lower bounds Természettudományok Topological insulator 0103 physical sciences 010306 general physics 0210 nano-technology Maxima |
Zdroj: | Physica A: Statistical Mechanics and its Applications. 498:66-73 |
ISSN: | 0378-4371 |
DOI: | 10.1016/j.physa.2018.01.024 |
Popis: | The combined Renyi–Fisher entropy product of electrons plus holes displays a minimum at the charge neutrality points. The Stam–Renyi difference and the Stam–Renyi uncertainty product of the electrons plus holes, show maxima at the charge neutrality points. Topological quantum numbers capable of detecting the topological insulator and the band insulator phases, are defined. Upper and lower bounds for the position and momentum space Renyi–Fisher entropy products are derived. |
Databáze: | OpenAIRE |
Externí odkaz: |