Gog and GOGAm pentagons
Autor: | Hayat Cheballah, Philippe Biane |
---|---|
Přispěvatelé: | Laboratoire d'Informatique Gaspard-Monge (LIGM), Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM) |
Rok vydání: | 2016 |
Předmět: |
Conjecture
[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] 010102 general mathematics Diagonal 0102 computer and information sciences Computer Science::Computational Geometry 01 natural sciences Theoretical Computer Science Combinatorics Computational Theory and Mathematics 010201 computation theory & mathematics Bijection Discrete Mathematics and Combinatorics 0101 mathematics Mathematics |
Zdroj: | Journal of Combinatorial Theory, Series A Journal of Combinatorial Theory, Series A, Elsevier, 2016, ⟨10.1016/j.jcta.2015.10.001⟩ |
ISSN: | 0097-3165 1096-0899 |
DOI: | 10.1016/j.jcta.2015.10.001 |
Popis: | International audience; We consider the problem of finding a bijection between the sets of alternating sign matrices and of totally symmetric self complementary plane partitions, which can be reformulated using Gog and Magog triangles. In a previous work we introduced GOGAm triangles , which are images of Magog triangles by the Schützenberger involution. In this paper we introduce Gog and GOGAm pentagons. We conjecture that they are equienumerated. We provide some numerical evidence as well as an explicit bijection in the case when they have one or two diagonals. We also consider some interesting statistics on Gog and Magog triangles. |
Databáze: | OpenAIRE |
Externí odkaz: |