Gog and GOGAm pentagons

Autor: Hayat Cheballah, Philippe Biane
Přispěvatelé: Laboratoire d'Informatique Gaspard-Monge (LIGM), Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM)
Rok vydání: 2016
Předmět:
Zdroj: Journal of Combinatorial Theory, Series A
Journal of Combinatorial Theory, Series A, Elsevier, 2016, ⟨10.1016/j.jcta.2015.10.001⟩
ISSN: 0097-3165
1096-0899
DOI: 10.1016/j.jcta.2015.10.001
Popis: International audience; We consider the problem of finding a bijection between the sets of alternating sign matrices and of totally symmetric self complementary plane partitions, which can be reformulated using Gog and Magog triangles. In a previous work we introduced GOGAm triangles , which are images of Magog triangles by the Schützenberger involution. In this paper we introduce Gog and GOGAm pentagons. We conjecture that they are equienumerated. We provide some numerical evidence as well as an explicit bijection in the case when they have one or two diagonals. We also consider some interesting statistics on Gog and Magog triangles.
Databáze: OpenAIRE