Нелокальна крайова задача для системи диференціальних рівнянь з операторними коефіцієнтами у багатовимірній комплексній області
Autor: | N. I. Strap, V. S. Il'kiv |
---|---|
Rok vydání: | 2014 |
Předmět: |
Discrete mathematics
Partial differential equation lcsh:Mathematics General Mathematics Boundary problem рівняння з частинними похідними оператор узагальненого диференціювання малі знаменники lcsh:QA1-939 псевдо-диференціальний оператор Pseudo-differential operator Domain (mathematical analysis) Operator (computer programming) метрична оцінка Uniqueness Boundary value problem Mathematics Variable (mathematics) |
Zdroj: | Karpatsʹkì Matematičnì Publìkacìï, Vol 6, Iss 2, Pp 242-255 (2014) |
ISSN: | 2313-0210 2075-9827 |
DOI: | 10.15330/cmp.6.2.242-255 |
Popis: | The paper is devoted to investigation of non-local boundary problem for a system of partial differential equations with the operator $B=(B_1,\ldots,B_p)$, where $B_j\equiv z_j\frac{\partial}{\partial z_j}$, $j=1,\ldots,p$, are operators of the generalized differentiation, which operates on complex variable $z_j$. Problem is incorrect in the Hadamard sense and the solvability of this problem depends on the small denominators which arising in the construction of the solution. By using of metric approach, the theorem about lower estimation of small denominators was proved, and also existence and uniqueness conditions of this solution in the scale of spaces of many complex variables functions are establish. |
Databáze: | OpenAIRE |
Externí odkaz: |