Anisotropic evolution of D-dimensional FRW spacetime

Autor: Scott D. Jackson, Chad Middleton, Bret A. Brouse Jr.
Rok vydání: 2019
Předmět:
Zdroj: European Physical Journal C: Particles and Fields, Vol 79, Iss 12, Pp 1-24 (2019)
European Physical Journal
ISSN: 1434-6052
1434-6044
Popis: We examine the time evolution of the D=d+4 dimensional Einstein field equations subjected to a flat Robertson-Walker metric where the 3D and higher-dimensional scale factors are allowed to evolve at different rates. We find the exact solution to these equations for a single fluid component, which yields two limiting regimes offering the 3D scale factor as a function of the time. The fluid regime solution closely mimics that described by 4D FRW cosmology, offering a late-time behavior for the 3D scale factor after becoming valid in the early universe, and can give rise to a late-time accelerated expansion driven by vacuum energy. This is shown to be preceded by an earlier volume regime solution, which offers a very early-time epoch of accelerated expansion for a radiation-dominated universe for d=1. The time scales describing these phenomena, including the transition from volume to fluid regime, are shown to fall within a small fraction of the first second when the fundamental constants of the theory are aligned with the Planck time. This model potentially offers a higher-dimensional alternative to scalar-field inflationary theory and a consistent cosmological theory, yielding a unified description of early- and late-time accelerated expansions via a 5D spacetime scenario.
Comment: Title changed from "A possible higher-dimensional alternative to scalar-field inflationary theory". Several new results have been added including a predicted lower- and upper-bound on the time scales marking the end of an early-time inflationary epoch and the beginning of an FRW epoch for d=1
Databáze: OpenAIRE