A computational approach to design energetic ionic liquids
Autor: | Hari Ji Singh, Uttama Mukherjee |
---|---|
Rok vydání: | 2013 |
Předmět: |
Chemistry
Detonation velocity Organic Chemistry Inorganic chemistry Binding energy Detonation Analytical chemistry Ionic bonding Catalysis Computer Science Applications Ion Inorganic Chemistry Delocalized electron chemistry.chemical_compound Computational Theory and Mathematics Ionic liquid Physical and Theoretical Chemistry Natural bond orbital |
Zdroj: | Journal of Molecular Modeling. 19:2317-2327 |
ISSN: | 0948-5023 1610-2940 |
DOI: | 10.1007/s00894-013-1775-2 |
Popis: | The present work deals with the theoretical estimation of ion-pair binding energies and the energetic properties of four ion pairs formed by combining the 1-butyl-2,4-dinitro-3-methyl imidazolium ion with nitrate (I), perchlorate (II), dinitramide (III), or 3,5-dinitro-1,2,4-triazolate (IV) anions. The counterpoise-corrected ion-pair binding energies were calculated for each ion pair at the B3LYP/6-311+G(d,p) level of theory. Results show that the cation-anion interaction is strongest for ion pair I and weakest for IV, indicating that the nitrate (I) has a greater tendency to exist as a stable ionic salt whereas the 3,5-dinitro-1,2,4-triazolate (IV) may exist as an ionic liquid. Natural bond orbital (NBO) analysis and electrostatic potential (ESP) mapping revealed that charge transfer occurs in all of the ion pairs, but is greatest (0.25e) for ion pair I and smallest (0.03e) for IV, resulting in ion pair I being the least polarized. A nucleus-independent chemical shift (NICS) study revealed that the aromaticity of the 1-butyl-2,4-dinitro-3-methyl imidazolium ion significantly increases in ion pair IV, indicating that this has the greatest charge delocalization among all of the four ion pairs considered. Studies of thermodynamic and detonation properties showed that ion pair II is the most energetic ion pair in terms of its detonation velocity (D = 7.5 km s(-1)) and detonation pressure (P = 23.1 GPa). It is also envisaged that ion pair IV would exist as an energetic azolium azolate type ionic liquid that could be conveniently used as a secondary explosive characterized by detonation parameters D and P of 6.9 km s(-1) and 19.3 GPa, respectively. These values are comparable to those of conventional explosives such as TNT. |
Databáze: | OpenAIRE |
Externí odkaz: |