Targeting Well-Balanced Solutions in Multi-Objective Bayesian Optimization under a Restricted Budget
Autor: | Victor Picheny, Vincent Herbert, David Gaudrie, Rodolphe Le Riche, Benoit Enaux |
---|---|
Přispěvatelé: | École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT), PSA Peugeot Citroën, PSA Peugeot Citroën (PSA), Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut Henri Fayol (FAYOL-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Département Génie mathématique et industriel (FAYOL-ENSMSE), Ecole Nationale Supérieure des Mines de St Etienne-Institut Henri Fayol, Centre National de la Recherche Scientifique (CNRS), Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRA), Institut National de la Recherche Agronomique (INRA), Battiti R., Brunato M., Kotsireas I., Pardalos P., Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), PSA Peugeot - Citroën (PSA), Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Institut Henri Fayol, Ecole Nationale Supérieure des Mines de St Etienne, École des Mines de Saint-Étienne ( Mines Saint-Étienne MSE ), Institut Mines-Télécom [Paris], PSA Peugeot - Citroën ( PSA ), Peugeot-Citroën, Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes ( LIMOS ), Sigma CLERMONT ( Sigma CLERMONT ) -Université Clermont Auvergne ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Unité de Mathématiques et Informatique Appliquées de Toulouse ( MIAT INRA ), Institut National de la Recherche Agronomique ( INRA ), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]
Mathematical optimization Computer science Computer experiments Gaussian processes Context (language use) 02 engineering and technology [STAT.OT]Statistics [stat]/Other Statistics [stat.ML] Multi-objective optimization Set (abstract data type) symbols.namesake [SPI]Engineering Sciences [physics] [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] Convergence (routing) 0202 electrical engineering electronic engineering information engineering [ SPI ] Engineering Sciences [physics] Parsimonious optimization [INFO]Computer Science [cs] [ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST] [MATH]Mathematics [math] Gaussian process ComputingMilieux_MISCELLANEOUS Bayesian optimization Pareto principle Preference-based optimization Computer experiment 020202 computer hardware & architecture symbols 020201 artificial intelligence & image processing [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] |
Zdroj: | Lecture Notes in Computer Science 12th International Conference on Learning and Intelligent Optimization 12th International Conference on Learning and Intelligent Optimization, Jun 2018, Kalamata, Greece. pp 175-179, ⟨10.1007/978-3-030-05348-2_15⟩ PGMO Days 2017 PGMO Days 2017, Nov 2017, Saclay, France Journées du GdR Mascot-Num 2018 Journées du GdR Mascot-Num 2018, Mar 2018, Nantes, France Journées Oquaido 2017 Journées Oquaido 2017, Nov 2017, Orléans, France. 2017 International Conference on Learning and Intelligent Optimization (LION'18) International Conference on Learning and Intelligent Optimization (LION'18), Jun 2018, Kalamata, Greece Lecture Notes in Computer Science ISBN: 9783030053475 LION |
Popis: | International audience; Multi-objective optimization aims at finding the Pareto set composed of all the best trade-off solutions between several objectives. When dealing with expensive-to-evaluate black box functions, surrogate-based approaches, in the vein of EGO have proven their effectiveness. However, for extremely narrow budgets, and/or when the number of objectives is large, uncovering the entire Pareto set becomes out of reach even for these approaches. In this work, we restrict our search to well-chosen targeted parts of the Pareto set. This accelerates the search as only a subset of the objective space is considered. As an end-user would typically choose solutions with equilibrated trade-offs between objectives rather than ones favoring a single objective over the others, we will focus on the central part of the Pareto Front, which corresponds to the most well-balanced solutions. First, we discuss how to define and estimate the center of the Pareto Front. That estimated point has to fairly represent the topology of the front, in spite of the parsimonious knowledge of the objective space. Then, three infill criteria which will guide the optimization, includiing the Expected Hypervolume Improvement are studied and tailored through some of their hyperparameters to enable them to target.To assess performance, a benchmark built from real-world airfoil aerodynamic data, with variable dimension and number of objectives is used. Compared with standard techniques, the proposed methodology leads to a faster and a more precise convergence towards the Pareto Frontin the targeted region. |
Databáze: | OpenAIRE |
Externí odkaz: |