Numerical solution of convection-diffusion problems at high Péclet number using boundary elements
Autor: | H. Power, Luiz C. Wrobel, Z.H. Qiu |
---|---|
Rok vydání: | 1998 |
Předmět: |
Numerical Analysis
Applied Mathematics Mathematical analysis General Engineering Boundary (topology) Numerical solution of the convection–diffusion equation Upwind differencing scheme for convection Péclet number Singular integral symbols.namesake symbols Cauchy principal value Convection–diffusion equation Boundary element method Mathematics |
Zdroj: | Scopus-Elsevier |
ISSN: | 1097-0207 0029-5981 |
DOI: | 10.1002/(sici)1097-0207(19980315)41:5<899::aid-nme314>3.0.co;2-t |
Popis: | This paper describes a boundary element scheme for solving steady-state convection–diffusion problems at high Peclet numbers. A special treatment of the singular integrals is included which uses discontinuous elements and a regularization procedure. Transformations are performed to avoid directly evaluating Bessel functions for Cauchy principal value and hypersingular integrals. Test examples are solved with values of Peclet number up to 107 to assess the numerical scheme. © 1998 John Wiley & Sons, Ltd. |
Databáze: | OpenAIRE |
Externí odkaz: |