Searching for a counterexample to Kurepa's Conjecture
Autor: | Milos Tatarevic, Vladica Andrejic |
---|---|
Rok vydání: | 2014 |
Předmět: |
Discrete mathematics
Factorial Algebra and Number Theory Conjecture Mathematics - Number Theory 11B83 Applied Mathematics Prime number 010103 numerical & computational mathematics 0102 computer and information sciences Divisibility rule 01 natural sciences Prime (order theory) Computational Mathematics Number theory 010201 computation theory & mathematics FOS: Mathematics Number Theory (math.NT) 0101 mathematics Mathematics Counterexample |
DOI: | 10.48550/arxiv.1409.0800 |
Popis: | Kurepa's conjecture states that there is no odd prime $p$ that divides $!p=0!+1!+\cdots+(p-1)!$. We search for a counterexample to this conjecture for all $p Comment: Accepted for publication in Mathematics of Computation |
Databáze: | OpenAIRE |
Externí odkaz: |