A discrete time evolution model for fracture networks
Autor: | Gábor Domokos, Krisztina Regős |
---|---|
Rok vydání: | 2022 |
Předmět: |
Physics - Geophysics
High Energy Physics::Phenomenology Probability (math.PR) FOS: Mathematics Soft Condensed Matter (cond-mat.soft) FOS: Physical sciences High Energy Physics::Experiment 86-10 Condensed Matter - Soft Condensed Matter Management Science and Operations Research Mathematics - Probability Physics::Geophysics Geophysics (physics.geo-ph) |
Zdroj: | Central European Journal of Operations Research. |
ISSN: | 1613-9178 1435-246X |
DOI: | 10.1007/s10100-022-00838-w |
Popis: | We examine geophysical crack patterns using the mean field theory of convex mosaics. We assign the pair $(\bar n^*,\bar v^*)$ of average corner degrees to each crack pattern and we define two local, random evolutionary steps $R_0$ and $R_1$, corresponding to secondary fracture and rearrangement of cracks, respectively. Random sequences of these steps result in trajectories on the $(\bar n^*,\bar v^*)$ plane. We prove the existence of limit points for several types of trajectories. Also, we prove that cell density $\rho = \bar v^*/\bar n^*$ increases monotonically under any admissible trajectory. Comment: 15 pages, 4 figures |
Databáze: | OpenAIRE |
Externí odkaz: |