Surface-based protein domains retrieval methods from a SHREC2021 challenge
Autor: | Florent Langenfeld, Tunde Aderinwale, Charles Christoffer, Woong-Hee Shin, Genki Terashi, Xiao Wang, Daisuke Kihara, Halim Benhabiles, Karim Hammoudi, Adnane Cabani, Feryal Windal, Mahmoud Melkemi, Ekpo Otu, Reyer Zwiggelaar, David Hunter, Yonghuai Liu, Léa Sirugue, Huu-Nghia H. Nguyen, Tuan-Duy H. Nguyen, Vinh-Thuyen Nguyen-Truong, Danh Le, Hai-Dang Nguyen, Minh-Triet Tran, Matthieu Montès |
---|---|
Přispěvatelé: | Laboratoire Génomique, bioinformatique et chimie moléculaire (GBCM), Conservatoire National des Arts et Métiers [CNAM] (CNAM), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Department of Computer Science [Purdue], Purdue University [West Lafayette], Suncheon National University [Suncheon, Corée du Sud], Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Bio-Micro-Electro-Mechanical Systems - IEMN (BIOMEMS - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), JUNIA (JUNIA), Université catholique de Lille (UCL), Institut de Recherche en Informatique Mathématiques Automatique Signal - IRIMAS - UR 7499 (IRIMAS), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)), Université de Strasbourg (UNISTRA), École Supérieure d’Ingénieurs en Génie Électrique (ESIGELEC), Aberystwyth University, Edge Hill University, Vietnam National University - Ho Chi Minh City (VNU-HCM), Léa Sirugue, Matthieu Montès and Florent Langenfeld are supported by the European Research Council Executive Agency under the research grant number 640,283. Daisuke Kihara acknowledges supports from the National Institutes of Health (R01GM133840, R01GM123055) and the National Science Foundation (DBI2003635, CMMI1825941, and MCB1925643). Charles Christoffer is supported by NIGMS-funded pre–doctoral fellowship (T32 GM132024). Huu-Nghia H. Nguyen, Tuan-Duy H. Nguyen, Vinh-Thuyen Nguyen-Truong, Danh Le, Hai-Dang Nguyen, and Minh-Triet Tran are supported by National University Ho Chi Minh City (VNU-HCM) (DS2020-42-01). |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Molecular Graphics and Modelling Journal of Molecular Graphics and Modelling, 2022, 111, pp.108103. ⟨10.1016/j.jmgm.2021.108103⟩ J Mol Graph Model |
ISSN: | 1093-3263 |
Popis: | publication dans une revue suite à la communication hal-03467479 (SHREC 2021: surface-based protein domains retrieval); International audience; Proteins are essential to nearly all cellular mechanism and the effectors of the cells activities. As such, they often interact through their surface with other proteins or other cellular ligands such as ions or organic molecules. The evolution generates plenty of different proteins, with unique abilities, but also proteins with related functions hence similar 3D surface properties (shape, physico-chemical properties, …). The protein surfaces are therefore of primary importance for their activity. In the present work, we assess the ability of different methods to detect such similarities based on the geometry of the protein surfaces (described as 3D meshes), using either their shape only, or their shape and the electrostatic potential (a biologically relevant property of proteins surface). Five different groups participated in this contest using the shape-only dataset, and one group extended its pre-existing method to handle the electrostatic potential. Our comparative study reveals both the ability of the methods to detect related proteins and their difficulties to distinguish between highly related proteins. Our study allows also to analyze the putative influence of electrostatic information in addition to the one of protein shapes alone. Finally, the discussion permits to expose the results with respect to ones obtained in the previous contests for the extended method. The source codes of each presented method have been made available online. |
Databáze: | OpenAIRE |
Externí odkaz: |