On the primality of 2h·3n+1
Autor: | Christoph Kirfel, Øystein J. Rødseth |
---|---|
Jazyk: | angličtina |
Předmět: |
Discrete mathematics
Primality certificate Solovay–Strassen primality test Theoretical Computer Science Combinatorics Miller–Rabin primality test Strong pseudoprime Cubic reciprocity Primality tests Discrete Mathematics and Combinatorics Primality test Industrial-grade prime Lucas primality test Provable prime Mathematics |
Zdroj: | Discrete Mathematics. (1-3):395-406 |
ISSN: | 0012-365X |
DOI: | 10.1016/S0012-365X(01)00125-X |
Popis: | We consider the primality test of Williams and Zarnke for rational integers of the form 2 h ·3 n +1. We give an algebraic proof of the test, and we resolve a sign ambiguity. We also show that the conditions of the original test can be relaxed, especially if h is divisible by a power of 2. |
Databáze: | OpenAIRE |
Externí odkaz: |