Self-organized gradient percolation method for numerical simulation of impregnation in porous media

Autor: A.K. Nguyen, E. Blond, T. Sayet, A. Batakis, E. de Bilbao, M.D. Duong
Přispěvatelé: Mécanique des Matériaux et Procédés (MMP), Laboratoire de Mécanique Gabriel Lamé (LaMé), Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours-Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO), Université d'Orléans (UO)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université d'Orléans (UO)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours (UT)-Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours (UT)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Capillary pressure
Multiphysics
Computational Mechanics
Porous media
General Physics and Astronomy
CPU time
Impregnation
Probability density function
010103 numerical & computational mathematics
[SPI.MECA.MSMECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph]
01 natural sciences
Gradient percolation
[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]
0101 mathematics
Computer simulation
Mechanical Engineering
Mechanics
Finite element method
Computer Science Applications
[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of the structures [physics.class-ph]
Capillary pressure profile
010101 applied mathematics
Mechanics of Materials
[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph]
Percolation
Porous medium
Simulation
Zdroj: Computer Methods in Applied Mechanics and Engineering
Computer Methods in Applied Mechanics and Engineering, Elsevier, 2019, 344, pp.711-733. ⟨10.1016/j.cma.2018.10.027⟩
ISSN: 0045-7825
DOI: 10.1016/j.cma.2018.10.027⟩
Popis: The modeling of the impregnation of porous media with liquid is a research topic with a wide scope of applications. The numerical models that are faithful to the laws of physics require a multiphysics approach taking into account the complexity of this multiphysics coupling. The aim of the thesis is to propose a numerical model which is able to reproduce the evolution of the capillary pressure profile for the (quasi) one-dimensional non-reactive unsaturated impregnation. This model is based on a pure probabilistic approach, where its parameters are related to the laws of the physics governing the impregnation process and avoiding the resolution of the partial differential classical equation which is the arising origin of the current numerical locks. This method, called Self-Organised Gradient Percolation, has two main objectives: drastically reducing CPU time and ensuring reliable results to be free from spurious oscillations. The key points of the method are: the assumption that the capillary pressure profile is considered as a probability density function and the strong coupling between the model parameters and thematerial properties. The first results, compared to numerical results from finite element method and experimental results, are promising. An extension of the model to the two-dimensional case is proposed in the outlook.
Databáze: OpenAIRE