ZnCdS Dotted with Highly Dispersed Pt Supported on SiO2 Nanospheres Promoting Photocatalytic Hydrogen Evolution

Autor: Hermenegildo García, Pingping Zhen, Ke Liu, Shaoqing Song, Lichao Chen, Chuanzhi Sun, Lu Peng
Rok vydání: 2021
Předmět:
Zdroj: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
Digital.CSIC. Repositorio Institucional del CSIC
ISSN: 1932-7455
1932-7447
DOI: 10.1021/acs.jpcc.1c03535
Popis: [EN] The efficiency of solar hydrogen evolution closely depends on the fast transfer of charge carriers and the effective use of visible light. In this work, a novel photocatalyst SiO2/ZnCdS/Pt was successfully prepared to solve these two problems. An artistic structure of the photocatalyst was constructed and ZnCdS was successfully wrapped on the surface of SiO2 spheres with uniform Pt nanoparticles (NPs) in a size of 4.1 +/- 0.7 nm highly dispersed on the ZnCdS shell through the self-assembly method. Pt NPs can absorb the scattered light in the near field of SiO2 spheres. With the synergistic effect of SiO2 spheres and small highly dispersed Pt NPs, the absorption of visible light was significantly promoted. Meanwhile, the electron-hole recombination was also effectively inhibited, thus improving the photocatalytic activity. The hydrogen production activity of the highly efficient photocatalyst was as high as 8.3 mmol g(-1) h(-1) under visible light (lambda > 420 nm). The photocatalytic activity of SiO2/ZnCdS/Pt was 2.9 times higher than that of the ZnCdS/Pt photocatalyst.
This work was supported by the National Natural Science Foundation of China (21976111), Shandong Provincial Natural Science Foundation (ZR2019MB052), and Large Instrument Open Foundation of Shandong Normal University (KFJJ2019004; KFJJ2021006).
Databáze: OpenAIRE