Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes
Autor: | Ziad H. Al-Oanzi, Alex J. Lange, Howard C. Towle, Loranne Agius, Susan J. Tudhope, Catherine Arden, Kirsty S. Cullen, John L. Petrie |
---|---|
Rok vydání: | 2012 |
Předmět: |
Male
Phosphofructokinase-2 Allosteric regulation Fructose 1 6-bisphosphatase Active Transport Cell Nucleus Carbohydrate metabolism Deoxyglucose Biochemistry chemistry.chemical_compound Fructosediphosphates Animals Phosphofructokinase 2 Glycolysis Phosphorylation Rats Wistar Promoter Regions Genetic Molecular Biology Cells Cultured Xylitol biology Basic Helix-Loop-Helix Leucine Zipper Transcription Factors Fructose Hexosamines Cell Biology Rats Glucose Fructose 2 6-bisphosphate chemistry Gene Expression Regulation Dihydroxyacetone biology.protein Glucose-6-Phosphatase Hepatocytes Glucose 6-phosphatase Protein Binding |
Zdroj: | The Biochemical journal. 443(1) |
ISSN: | 1470-8728 |
Popis: | Glucose metabolism in the liver activates the transcription of various genes encoding enzymes of glycolysis and lipogenesis and also G6pc (glucose-6-phosphatase). Allosteric mechanisms involving glucose 6-phosphate or xylulose 5-phosphate and covalent modification of ChREBP (carbohydrate-response element-binding protein) have been implicated in this mechanism. However, evidence supporting an essential role for a specific metabolite or pathway in hepatocytes remains equivocal. By using diverse substrates and inhibitors and a kinase-deficient bisphosphatase-active variant of the bifunctional enzyme PFK2/FBP2 (6-phosphofructo-2-kinase–fructose-2,6-bisphosphatase), we demonstrate an essential role for fructose 2,6-bisphosphate in the induction of G6pc and other ChREBP target genes by glucose. Selective depletion of fructose 2,6-bisphosphate inhibits glucose-induced recruitment of ChREBP to the G6pc promoter and also induction of G6pc by xylitol and gluconeogenic precursors. The requirement for fructose 2,6-bisphosphate for ChREBP recruitment to the promoter does not exclude the involvement of additional metabolites acting either co-ordinately or at downstream sites. Glucose raises fructose 2,6-bisphosphate levels in hepatocytes by reversing the phosphorylation of PFK2/FBP2 at Ser32, but also independently of Ser32 dephosphorylation. This supports a role for the bifunctional enzyme as the phosphometabolite sensor and for its product, fructose 2,6-bisphosphate, as the metabolic signal for substrate-regulated ChREBP-mediated expression of G6pc and other ChREBP target genes. |
Databáze: | OpenAIRE |
Externí odkaz: |