OVERLAP-AWARE LOW-LATENCY ONLINE SPEAKER DIARIZATION BASED ON END-TO-END LOCAL SEGMENTATION

Autor: Juan Manuel Coria, Hervé Bredin, Sahar Ghannay, Sophie Rosset
Přispěvatelé: Information, Langue Ecrite et Signée (ILES), Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Sciences et Technologies des Langues (STL), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE92-0025,PLUMCOT,Identification non-supervisée des personnages de films et séries télévisées(2016), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Sciences et Technologies des Langues (STL), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: IEEE Automatic Speech Recognition and Unserstanding Workshop
IEEE Automatic Speech Recognition and Unserstanding Workshop, Dec 2021, Cartagena, Colombia
HAL
Popis: We propose to address online speaker diarization as a combination of incremental clustering and local diarization applied to a rolling buffer updated every 500ms. Every single step of the proposed pipeline is designed to take full advantage of the strong ability of a recently proposed end-to-end overlap-aware segmentation to detect and separate overlapping speakers. In particular, we propose a modified version of the statistics pooling layer (initially introduced in the x-vector architecture) to give less weight to frames where the segmentation model predicts simultaneous speakers. Furthermore, we derive cannot-link constraints from the initial segmentation step to prevent two local speakers from being wrongfully merged during the incremental clustering step. Finally, we show how the latency of the proposed approach can be adjusted between 500ms and 5s to match the requirements of a particular use case, and we provide a systematic analysis of the influence of latency on the overall performance (on AMI, DIHARD and VoxConverse).
Comment: To appear in ASRU 2021. Code available at https://github.com/juanmc2005/StreamingSpeakerDiarization/
Databáze: OpenAIRE