Indentation cracking in silicate glasses is directed by shear flow, not by densification
Autor: | Etienne Barthel, Guillaume Kermouche, Gustavo Rosales-Sosa, Vincent Keryvin |
---|---|
Přispěvatelé: | Sciences et Ingénierie de la Matière Molle (UMR 7615) (SIMM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Centre National de la Recherche Scientifique (CNRS), Nippon Electric Glass, Laboratoire Georges Friedel (LGF-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2020 |
Předmět: |
Materials science
Plasticity Polymers and Plastics Constitutive equation 02 engineering and technology Flow stress 01 natural sciences Instability densification Indentation 0103 physical sciences [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] Composite material 010302 applied physics Metals and Alloys Indentation cracking 021001 nanoscience & nanotechnology Electronic Optical and Magnetic Materials Cracking Shear (geology) [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] Ceramics and Composites Constitutive relation Silicate glasses 0210 nano-technology Shear flow [PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] |
Zdroj: | Acta Materialia Acta Materialia, Elsevier, 2020, 194, pp.473-481. ⟨10.1016/j.actamat.2020.05.011⟩ |
ISSN: | 1359-6454 |
DOI: | 10.1016/j.actamat.2020.05.011 |
Popis: | International audience; Over the past decades, constitutive relations have been developed to compute the mechanical response of silicate glasses at the continuum length scale. They are now reliable enough that we can calculate indentation induced stress and strain fields and examine the impact of material parameters on indentation response, and especially hardness, pileup and stress fields. In contrast to a presently widespread assumption in the literature, we show that (shear) flow stress is the primary determinant of these properties, and that densification plays a secondary role in the indentation response of all the silicate glasses. This result applies even for large values of the densification at saturation because of the high ratio between effective volumetric yield stress (i.e. yield pressure) and flow stress. It is well-known that, depending upon composition, silicate glasses exhibit very different sensitivities to indentation cracking, although all other standard mechanical properties remain quite similar. We point out that material damage incurred through plastic shear flow, and especially shear flow instability and localization may well control crack initiation, which would resolve the paradox. Shear flow instability and damage has not been quantitatively investigated in detail in silicate glasses as yet, neither experimentally nor theoretically. However , we believe it is key to an in depth understanding of cracking resistance in silicate glasses. |
Databáze: | OpenAIRE |
Externí odkaz: |