Effects of Gamma-Tocotrienol on Partial-Body Irradiation-Induced Intestinal Injury in a Nonhuman Primate Model

Autor: Sarita Garg, Tarun K. Garg, Isabelle R. Miousse, Stephen Y. Wise, Oluseyi O. Fatanmi, Alena V. Savenka, Alexei G. Basnakian, Vijay K. Singh, Martin Hauer-Jensen
Rok vydání: 2022
Předmět:
Zdroj: Antioxidants
Volume 11
Issue 10
Pages: 1895
ISSN: 2076-3921
Popis: Exposure to high doses of radiation, accidental or therapeutic, often results in gastrointestinal (GI) injury. To date, there are no therapies available to mitigate GI injury after radiation exposure. Gamma-tocotrienol (GT3) is a promising radioprotector under investigation in nonhuman primates (NHP). We have shown that GT3 has radioprotective function in intestinal epithelial and crypt cells in NHPs exposed to 12 Gy total-body irradiation (TBI). Here, we determined GT3 potential in accelerating the GI recovery in partial-body irradiated (PBI) NHPs using X-rays, sparing 5% bone marrow. Sixteen rhesus macaques were treated with either vehicle or GT3 24 h prior to 12 Gy PBI. Structural injuries and crypt survival were examined in proximal jejunum on days 4 and 7. Plasma citrulline was assessed using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Crypt cell proliferation and apoptotic cell death were evaluated using Ki-67 and TUNEL staining. PBI significantly decreased mucosal surface area and reduced villous height. Interestingly, GT3 increased crypt survival and enhanced stem cell proliferation at day 4; however, the effects seemed to be minimized by day 7. GT3 did not ameliorate a radiation-induced decrease in citrulline levels. These data suggest that X-rays induce severe intestinal injury post-PBI and that GT3 has minimal radioprotective effect in this novel model.
Databáze: OpenAIRE