Polyhedra Associated with Open Locating-Dominating and Locating Total-Dominating Sets in Graphs

Autor: Silvia M. Bianchi, Yanina Lucarini, Annegret Wagler, Gabriela R. Argiroffo
Přispěvatelé: Universidad Nacional de Rosario [Argentina], Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Combinatorial Optimization. ISCO 2020
Combinatorial Optimization. ISCO 2020, pp.3-14, 2020, Print 978-3-030-53261-1 / Online 978-3-030-53262-8. ⟨10.1007/978-3-030-53262-8_1⟩
Lecture Notes in Computer Science ISBN: 9783030532611
ISCO
DOI: 10.1007/978-3-030-53262-8_1⟩
Popis: International audience; The problems of determining open locating-dominating or locating total-dominating sets of minimum cardinality in a graph G are variations of the classical minimum dominating set problem in G and are all known to be hard for general graphs. A typical line of attack is therefore to determine the cardinality of minimum such sets in special graphs. In this work we study the two problems from a polyhedral point of view. We provide the according linear relaxations, discuss their combinatorial structure, and demonstrate how the associated polyhedra can be entirely described or polyhedral arguments can be applied to find minimum such sets for special graphs.
Databáze: OpenAIRE