The Effect of Liquid Viscosity on the Rise Velocity of Taylor Bubbles in Small Diameter Bubble Column

Autor: M. Abdulkadir, Lokman A. Abdulkareem, Barry J. Azzopardi, Olumayowa T. Kajero
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Popis: The rise velocity of Taylor bubbles in small diameter bubble column was measured via cross-correlation between two planes of time-averaged void fraction data obtained from the electrical capacitance tomography (ECT). This was subsequently compared with the rise velocity obtained from the high-speed camera, manual time series analysis and likewise empirical models. The inertia, viscous and gravitational forces were identified as forces, which could influence the rise velocity. Fluid flow analysis was carried out using slug Reynolds number, Froude number and inverse dimensionless viscosity, which are important dimensionless parameters influencing the rise velocity of Taylor bubbles in different liquid viscosities, with the parameters being functions of the fluid properties and column diameter. It was found that the Froude number decreases with an increase in viscosity with a variation in flow as superficial gas velocity increases with reduction in rise velocity. A dominant effect of viscous and gravitational forces over inertia forces was obtained, which showed an agreement with Stokes law, where drag force is directly proportional to viscosity. Hence, the drag force increases as viscosity increases (5 < 100 < 1000 < 5000 mPa s), leading to a decrease in the rise velocity of Taylor bubbles. It was concluded that the rise velocity of Taylor bubbles decreases with an increase in liquid viscosity and, on the other hand, increases with an increase in superficial gas velocity.
Databáze: OpenAIRE