Contrast function estimation for the drift parameter of ergodic jump diffusion process

Autor: Chiara Amorino, Arnaud Gloter
Přispěvatelé: Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), ENSIIE-Université d'Évry-Val-d'Essonne (UEVE)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-ENSIIE-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Popis: In this paper we consider an ergodic diffusion process with jumps whose drift coefficient depends on an unknown parameter $\theta$. We suppose that the process is discretely observed at the instants (t n i)i=0,...,n with $\Delta$n = sup i=0,...,n--1 (t n i+1 -- t n i) $\rightarrow$ 0. We introduce an estimator of $\theta$, based on a contrast function, which is efficient without requiring any conditions on the rate at which $\Delta$n $\rightarrow$ 0, and where we allow the observed process to have non summable jumps. This extends earlier results where the condition n$\Delta$ 3 n $\rightarrow$ 0 was needed (see [10],[24]) and where the process was supposed to have summable jumps. Moreover, in the case of a finite jump activity, we propose explicit approximations of the contrast function, such that the efficient estimation of $\theta$ is feasible under the condition that n$\Delta$ k n $\rightarrow$ 0 where k > 0 can be arbitrarily large. This extends the results obtained by Kessler [15] in the case of continuous processes. L{\'e}vy-driven SDE, efficient drift estimation, high frequency data, ergodic properties, thresholding methods.
Databáze: OpenAIRE