Vanadium Dopant- And Strain-Dependent Magnetic Properties Of Single-Layer Vi3
Autor: | Hasan Sahin, Mehmet Yagmurcukardes, I. Eren, Mehmet Baskurt |
---|---|
Rok vydání: | 2020 |
Předmět: |
Materials science
Spintronics Condensed matter physics Dopant Band gap Doping General Physics and Astronomy 02 engineering and technology Surfaces and Interfaces General Chemistry 010402 general chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics 01 natural sciences 0104 chemical sciences Surfaces Coatings and Films Condensed Matter::Materials Science Ferromagnetism Monolayer Antiferromagnetism Condensed Matter::Strongly Correlated Electrons 0210 nano-technology Ground state |
Popis: | Motivated by the recent synthesis of two-dimensional VI3 [Kong et al. Adv. Mater. 31, 1808074 (2019)], we investigate the effect of V doping on the magnetic and electronic properties of monolayer VI3 by means of first-principles calculations. The dynamically stable semiconducting ferromagnetic (FM) and antiferromagnetic (AFM) phases of monolayer VI3 are found to display distinctive vibrational features that the magnetic state can be distinguished by Raman spectroscopy. In order to clarify the effect of experimentally observed excessive V atoms, the magnetic and electronic properties of the V-doped VI3 structures are analyzed. Our findings indicate that partially doped VI3 structures display FM ground state while the fully-doped structure exhibits AFM ground state. The fully-doped monolayer VI3 is found to be a semiconductor with a relatively larger band gap than its pristine structure. In addition, strain-dependent electronic and magnetic properties of fully- and partially-doped VI3 structures reveal that pristine monolayer displays a FM-to-AFM phase transition with robust semiconducting nature for 5% of compressive strain, while fully-doped monolayer VI3 structure possesses AFM-to-FM semiconducting transition at tensile strains larger than 4%. In contrast, the partially-doped VI3 monolayers are found to display robust FM ground state under biaxial strain. Its dopant and strain tunable electronic and magnetic nature makes monolayer VI3 a promising material for applications in nanoscale spintronic devices. |
Databáze: | OpenAIRE |
Externí odkaz: |