Fast Fusion of Hyperspectral and Multispectral Images: A Tucker Approximation Approach

Autor: Prévost, Clémence, Chainais, Pierre, Boyer, Remy
Přispěvatelé: Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2022
Předmět:
Zdroj: 2022 IEEE International Conference on Image Processing (ICIP).
DOI: 10.1109/icip46576.2022.9898065
Popis: Hyperspectral super-resolution based on coupled Tucker decomposition has been recently considered in the remote sensing community. The state-of-the-art approaches did not fully exploit the coupling information contained in hyperspectral and multispectral images of the same scene. In this paper, we propose a new algorithm that overcomes this limitation. It accounts for both the high-resolution and the low-resolution information in the model, by solving a set of leastsquares problems. In addition, we provide exact recovery conditions for the super-resolution image in the noiseless case. Our simulations show that the proposed algorithm achieves good reconstruction with low complexity.
Databáze: OpenAIRE