Fermi velocity renormalization in graphene probed by terahertz time-domain spectroscopy

Autor: Meihui Wang, Peter Uhd Jepsen, Deping Huang, Ismael Garcia Serrano, Qian Shen, Antti-Pekka Jauho, Rodney S. Ruoff, Patrick Rebsdorf Whelan, José M. Caridad, M. Venkata Kamalakar, Peter Bøggild, Haofei Shi, Binbin Zhou, David M. A. Mackenzie, Jie Ji, Da Luo
Přispěvatelé: Danmarks Tekniske Universitet, Uppsala University, Department of Electronics and Nanoengineering, Chinese Academy of Sciences, Institute for Basic Science, Ulsan National Institute of Science and Technology, Aalto-yliopisto, Aalto University
Rok vydání: 2020
Předmět:
Terahertz radiation
Physics::Optics
FOS: Physical sciences
02 engineering and technology
01 natural sciences
law.invention
Renormalization
law
0103 physical sciences
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
General Materials Science
010306 general physics
Spectroscopy
Terahertz time-domain spectroscopy
Condensed Matter::Quantum Gases
Physics
Condensed Matter - Materials Science
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed matter physics
Graphene
Mechanical Engineering
Materials Science (cond-mat.mtrl-sci)
Fermi energy
General Chemistry
021001 nanoscience & nanotechnology
Condensed Matter Physics
3. Good health
Fermi velocity renormalization. mobility mapping
Flexible substrates
THz-TDS
Mechanics of Materials
Condensed Matter::Strongly Correlated Electrons
0210 nano-technology
Fermi Gamma-ray Space Telescope
Zdroj: Whelan, P R, Shen, Q, Zhou, B, Serrano, I G, Kamalakar, M V, MacKenzie, D M A, Ji, J, Huang, D, Shi, H, Luo, D, Wang, M, Ruoff, R S, Jauho, A P, Jepsen, P U, Bøggild, P & Caridad, J M 2020, ' Fermi velocity renormalization in graphene probed by terahertz time-domain spectroscopy ', 2D materials, vol. 7, no. 3, 035009 . https://doi.org/10.1088/2053-1583/ab81b0
DOI: 10.48550/arxiv.2006.00486
Popis: We demonstrate terahertz time-domain spectroscopy (THz-TDS) to be an accurate, rapid and scalable method to probe the interaction-induced Fermi velocity renormalization {\nu}F^* of charge carriers in graphene. This allows the quantitative extraction of all electrical parameters (DC conductivity {\sigma}DC, carrier density n, and carrier mobility {\mu}) of large-scale graphene films placed on arbitrary substrates via THz-TDS. Particularly relevant are substrates with low relative permittivity (< 5) such as polymeric films, where notable renormalization effects are observed even at relatively large carrier densities (> 10^12 cm-2, Fermi level > 0.1 eV). From an application point of view, the ability to rapidly and non-destructively quantify and map the electrical ({\sigma}DC, n, {\mu}) and electronic ({\nu}F^* ) properties of large-scale graphene on generic substrates is key to utilize this material in applications such as metrology, flexible electronics as well as to monitor graphene transfers using polymers as handling layers.
Comment: 23 pages, 8 figures
Databáze: OpenAIRE