A STOCHASTIC THRESHOLD FOR AN EPIDEMIC MODEL WITH ISOLATION AND A NON LINEAR INCIDENCE
Autor: | Aziz Laaribi, Tomás Caraballo, Regragui Taki, Idriss Sekkak, Mohamed El Fatini |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico, Ministerio de Ciencia, Innovación y Universidades (MICINN). España, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Consejería de Innovación en Ciencia y Empresa, Junta de Andalucía |
Rok vydání: | 2020 |
Předmět: |
Lyapunov function
Stochastic process extinction Applied Mathematics 010102 general mathematics General Medicine Nonlinear incidence 01 natural sciences stochastic process 010101 applied mathematics symbols.namesake Nonlinear system persistence in mean Epidemic model symbols threshold Applied mathematics Uniqueness Isolation (database systems) stochastic permanence 0101 mathematics Analysis Mathematics Incidence (geometry) |
Zdroj: | idUS: Depósito de Investigación de la Universidad de Sevilla Universidad de Sevilla (US) idUS. Depósito de Investigación de la Universidad de Sevilla instname |
Popis: | In this paper, we study a stochastic epidemic model with isolation and nonlinear incidence. In particular, we propose a stochastic threshold for the model without any sharp su cient assumptions on model parameters as compared to existing works. Firstly, we establish the uniqueness of the global positive solution according to Lyapunov function method. Secondly, we prove stochastic permanence of the solutions. Then, we establish su cient condition for the extinction. Thirdly, we investigate necessary and su cient conditions for persistence in mean of the disease. Finally, we provide some numerical simulations to illustrate our theoretical results. Ministerio de Ciencia, Innovación y Universidades (MICINN). España Unión Europea Consejería de Innovación en Ciencia y Empresa, Junta de Andalucía |
Databáze: | OpenAIRE |
Externí odkaz: |