Can we predict self-reported customer satisfaction from interactions ?

Autor: Delphine Charlet, Jeremy Auguste, Géraldine Damnati, Frédéric Béchet, Benoit Favre
Přispěvatelé: Traitement Automatique du Langage Ecrit et Parlé (TALEP), Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Orange Labs [Lannion], France Télécom, ANR-15-CE23-0003,DATCHA,Extraction de connaissances à partir de vastes corpus de conversations 'chat' client-opérateurs(2015), Auguste, Jeremy, Extraction de connaissances à partir de vastes corpus de conversations 'chat' client-opérateurs - - DATCHA2015 - ANR-15-CE23-0003 - AAPG2015 - VALID
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Knowledge management
Attention- based RNN models
Computer science
media_common.quotation_subject
[INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
[INFO.INFO-TT] Computer Science [cs]/Document and Text Processing
Context (language use)
Opinion Analysis
02 engineering and technology
[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
CNN models
[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL]
Task (project management)
Net Promoter
030507 speech-language pathology & audiology
03 medical and health sciences
020204 information systems
0202 electrical engineering
electronic engineering
information engineering

Conversation
ComputingMilieux_MISCELLANEOUS
media_common
Service (business)
business.industry
Quality of service
Net Promoter Score
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing
Order (business)
[INFO.INFO-CL] Computer Science [cs]/Computation and Language [cs.CL]
Customer satisfaction
0305 other medical science
business
Human-Human conversation mining
Zdroj: International Conference on Acoustics, Speech and Signal Processing
International Conference on Acoustics, Speech and Signal Processing, May 2019, Brighton, United Kingdom
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, Brighton, United Kingdom. ⟨10.1109/ICASSP.2019.8683896⟩
ICASSP
DOI: 10.1109/ICASSP.2019.8683896⟩
Popis: International audience; In the context of contact centers, customers' satisfaction after a conversation with an agent is a critical issue which has to be collected in order to detect problems and improve quality of service. Automatically predicting customer satisfaction directly from system logs, without any survey or manual annotation is a challenging task of a great interest for the field of human-human conversation understanding and for improving contact center quality of service. Unlike previous studies that have focused on questions directly related to the content of a conversation, we look at a more general opinion about a service which is called the "Net Promoter Score" (NPS) where customers are considered either as promoters, detractors or neutral. On a very large corpus of chat-conversations with customer satisfaction surveys, we explore several classification scheme in order to achieve this prediction task, only using conversation logs.
Databáze: OpenAIRE