Can we predict self-reported customer satisfaction from interactions ?
Autor: | Delphine Charlet, Jeremy Auguste, Géraldine Damnati, Frédéric Béchet, Benoit Favre |
---|---|
Přispěvatelé: | Traitement Automatique du Langage Ecrit et Parlé (TALEP), Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Orange Labs [Lannion], France Télécom, ANR-15-CE23-0003,DATCHA,Extraction de connaissances à partir de vastes corpus de conversations 'chat' client-opérateurs(2015), Auguste, Jeremy, Extraction de connaissances à partir de vastes corpus de conversations 'chat' client-opérateurs - - DATCHA2015 - ANR-15-CE23-0003 - AAPG2015 - VALID |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Knowledge management
Attention- based RNN models Computer science media_common.quotation_subject [INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] [INFO.INFO-TT] Computer Science [cs]/Document and Text Processing Context (language use) Opinion Analysis 02 engineering and technology [INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] CNN models [INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] Task (project management) Net Promoter 030507 speech-language pathology & audiology 03 medical and health sciences 020204 information systems 0202 electrical engineering electronic engineering information engineering Conversation ComputingMilieux_MISCELLANEOUS media_common Service (business) business.industry Quality of service Net Promoter Score [INFO.INFO-TT]Computer Science [cs]/Document and Text Processing Order (business) [INFO.INFO-CL] Computer Science [cs]/Computation and Language [cs.CL] Customer satisfaction 0305 other medical science business Human-Human conversation mining |
Zdroj: | International Conference on Acoustics, Speech and Signal Processing International Conference on Acoustics, Speech and Signal Processing, May 2019, Brighton, United Kingdom ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, Brighton, United Kingdom. ⟨10.1109/ICASSP.2019.8683896⟩ ICASSP |
DOI: | 10.1109/ICASSP.2019.8683896⟩ |
Popis: | International audience; In the context of contact centers, customers' satisfaction after a conversation with an agent is a critical issue which has to be collected in order to detect problems and improve quality of service. Automatically predicting customer satisfaction directly from system logs, without any survey or manual annotation is a challenging task of a great interest for the field of human-human conversation understanding and for improving contact center quality of service. Unlike previous studies that have focused on questions directly related to the content of a conversation, we look at a more general opinion about a service which is called the "Net Promoter Score" (NPS) where customers are considered either as promoters, detractors or neutral. On a very large corpus of chat-conversations with customer satisfaction surveys, we explore several classification scheme in order to achieve this prediction task, only using conversation logs. |
Databáze: | OpenAIRE |
Externí odkaz: |