Quasi type IV codes over a non-unital ring

Autor: Alexis Bonnecaze, Alaa Altassan, Widyan Basaffar, Patrick Solé, Hatoon Shoaib, Adel Alahmadi
Přispěvatelé: King Abdulazziz University, Middle East Center of Algebra and its Applications (MECAA), King Abdulaziz University, Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Applicable Algebra in Engineering, Communication and Computing
Applicable Algebra in Engineering, Communication and Computing, Springer Verlag, 2021, ⟨10.1007/s00200-021-00488-6⟩
Applicable Algebra in Engineering, Communication and Computing, 2021
ISSN: 0938-1279
1432-0622
DOI: 10.1007/s00200-021-00488-6⟩
Popis: There is a local ring I of order 4, without identity for the multiplication, defined by generators and relations as $$\begin{aligned} I=\langle a,b \mid 2a=2b=0,\, a^{2}=b,\, \,ab=0 \rangle . \end{aligned}$$ We give a natural map between linear codes over I and additive codes over $${\mathbb{F}}_{4},$$ that allows for efficient computations. We study the algebraic structure of linear codes over this non-unital local ring, their generator and parity-check matrices. A canonical form for these matrices is given in the case of so-called nice codes. By analogy with $${\mathbb{Z}}_{4}$$ -codes, we define residue and torsion codes attached to a linear I-code. We introduce the notion of quasi self-dual codes (QSD) over I, and Type IV I-codes, that is, QSD codes all codewords of which have even Hamming weight. This is the natural analogue of Type IV codes over the field $${\mathbb{F}}_{4}.$$ Further, we define quasi Type IV codes over I as those QSD codes with an even torsion code. We give a mass formula for QSD codes, and another for quasi Type IV codes, and classify both types of codes, up to coordinate permutation equivalence, in short lengths.
Databáze: OpenAIRE