Discrete-time fractional variational problems

Autor: Nuno R. O. Bastos, Delfim F. M. Torres, Rui A. C. Ferreira
Rok vydání: 2011
Předmět:
Zdroj: Signal Processing. 91:513-524
ISSN: 0165-1684
DOI: 10.1016/j.sigpro.2010.05.001
Popis: We introduce a discrete-time fractional calculus of variations on the time scale $h\mathbb{Z}$, $h > 0$. First and second order necessary optimality conditions are established. Examples illustrating the use of the new Euler-Lagrange and Legendre type conditions are given. They show that solutions to the considered fractional problems become the classical discrete-time solutions when the fractional order of the discrete-derivatives are integer values, and that they converge to the fractional continuous-time solutions when $h$ tends to zero. Our Legendre type condition is useful to eliminate false candidates identified via the Euler-Lagrange fractional equation.
Submitted 24/Nov/2009; Revised 16/Mar/2010; Accepted 3/May/2010; for publication in Signal Processing.
Databáze: OpenAIRE