Low-noise diamond-based D.C. nano-SQUIDs

Autor: Manjith Bose, Daniel L. Creedon, Anders Barlow, Michael Stuiber, Georgina M. Klemencic, Soumen Mandal, Oliver Williams, Grant van Riessen, Christopher I. Pakes
Jazyk: angličtina
Rok vydání: 2022
Předmět:
ISSN: 2637-6113
Popis: Nanoscale superconducting quantum interference devices (nano-SQUIDs) with Dayem bridge junctions and a physical loop size of 50 nm have been engineered in boron-doped nanocrystalline diamond films using precision Ne-ion beam milling. In an unshunted device, the nonhysteretic operation can be maintained in an applied field exceeding 0.1 T with a high flux-to-voltage transfer function, giving a low flux noise at 1 kHz and a concurrent spin sensitivity of . At elevated magnetic fields, up to 2 T, flux modulation of the nano-SQUID output voltage is maintained but with an increase in period, attributed to an additional phase bias induced on the nano-SQUID loop by up to 16 vortices per period penetrating the nano-SQUID electrodes.
Databáze: OpenAIRE