On the effective action in presence of local non-linear constraints

Autor: Adam Rançon, Ivan Balog
Přispěvatelé: Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), ANR-16-IDEX-0004,ULNE,ULNE(2016)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
High Energy Physics - Theory
Statistics and Probability
Statistical field theory
Degrees of freedom (statistics)
toy model
FOS: Physical sciences
nonperturbative
01 natural sciences
Legendre transformation
symbols.namesake
Correlation function
0103 physical sciences
Functional renormalization group
Applied mathematics
correlation function
010306 general physics
Effective action
Condensed Matter - Statistical Mechanics
Mathematics
Second derivative
statistical field theory
effective average action
constraints
Statistical Mechanics (cond-mat.stat-mech)
010308 nuclear & particles physics
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
Statistical and Nonlinear Physics
Renormalization group
16. Peace & justice
constraint: nonlinear
[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]
High Energy Physics - Theory (hep-th)
effective action
symbols
Statistics
Probability and Uncertainty

renormalization group
field theory: statistical
Zdroj: J.Stat.Mech.
J.Stat.Mech., 2019, 1903 (3), pp.033215. ⟨10.1088/1742-5468/ab0c12⟩
DOI: 10.1088/1742-5468/ab0c12⟩
Popis: The conditions for the existence of the effective action in statistical field theory, the Legendre transform of the cumulant generating function, in presence of non-linear local constraints are discussed. This problem is of importance for non-perturbative approaches, such as the functional renormalization group. We show that the Legendre transform exists as long as the non-linear constraints do not imply linear constraints on the microscopic fields. We discuss how to handle the case of effectively linear constraints and we naturally obtain that the second derivative of the effective action is the Moore-Penrose pseudo-inverse of the correlation function. We illustrate our discussion with toy-models, and show that the correct counting of degrees of freedom in non-linearly constrained statistical field theories can be rather counter-intuitive.
13 pages; comments welcomed
Databáze: OpenAIRE