Material jetting additive manufacturing: An experimental study using designed metrological benchmarks
Autor: | Wai Yee Yeong, Vishwesh Dikshit, Chengcheng Wang, Yee Ling Yap, Jun Wei, Swee Leong Sing |
---|---|
Přispěvatelé: | School of Mechanical and Aerospace Engineering, A*STAR SIMTech, Singapore Centre for 3D Printing |
Rok vydání: | 2017 |
Předmět: |
0209 industrial biotechnology
Engineering Process (engineering) business.industry Additive Manufacturing Process capability General Engineering Design for assembly 3D printing 02 engineering and technology 021001 nanoscience & nanotechnology Manufacturing engineering Reliability engineering Design for manufacturability Metrology 3D Printing 020901 industrial engineering & automation Benchmark (computing) 0210 nano-technology business Inkjet printing |
Zdroj: | Precision Engineering. 50:275-285 |
ISSN: | 0141-6359 |
Popis: | Additive manufacturing (AM) technique allows the creation of parts with a high degree of design complexity by building three-dimensional (3D) parts layer-by-layer. Many of the current restrictions of design for manufacturing (DFM) as well as design for assembly (DFA) are no longer applicable for AM due to the lack of needs for tooling. Instead, it is critical to establish the manufacturing limits and design guidelines to achieve optimal production outcomes. This can be achieved through manipulation of process parameters. The purpose of this paper is to establish a systematic methodology for investigating the process capability of material jetting AM techniques by using specially designed benchmark artifacts. In this study, three customized benchmarks were designed to characterize and establish the process capability of material jetting AM techniques. Each of the benchmarks was designed for different purposes. Using a benchmark, metrological studies were conducted to determine the effect of process parameters on the dimensional accuracy of fabricated part. The design limitations on special features such as thin walls and assembly-free parts fabricated using different build orientations were also evaluated. ASTAR (Agency for Sci., Tech. and Research, S’pore) Accepted version |
Databáze: | OpenAIRE |
Externí odkaz: |