Popis: |
Cell separation events are important throughout the lifespan of a plant. To assure that the plant's integrity is not compromised, such events, which depend on cell wall degradation, have to be tightly controlled both in time and space. The final step of floral organ abscission in Arabidopsis is controlled by INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), in that mutation of IDA causes a block in abscission. Overexpression results in early abscission of floral organs. In a recent article we show that this is also the case when overexpressing the related IDA-LIKE (IDL) proteins, indicating a degree of functional redundancy. Based on gene swap and deletion constructs introduced in the ida mutant and synthetic peptide assays we demonstrated that the conserved C-terminal motif (EPIP) of IDA and IDL1 was sufficient to replace IDA function. This function is dependent on the presence of the receptor-like kinases (RLK) HAESA (HAE) and HAESA-LIKE2 (HSL2), suggesting that an IDA peptide acts as a ligand interacting with these receptors. Our study further revealed that the five IDL genes are expressed at various sites where cell separation takes place. We suggest that the IDL proteins constitute a family of ligands that act through RLKs similar to HAESA and control cell separation at different sites and development stages during the life of the plant. |