Distribution of Lanthanides, Yttrium, and Scandium in the Pilot-Scale Beneficiation of Fly Ashes Derived from Eastern Kentucky Coals
Autor: | John D. Wiseman, John G. Groppo, Prakash Joshi, Dorin V. Preda, James C. Hower, David P. Gamliel, Daniel T. Mohler, Todd Beers, Michael Schrock, Tonya Morgan, Shelley D. Hopps |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Lanthanide
lcsh:QE351-399.2 0211 other engineering and technologies chemistry.chemical_element Coal combustion products rare earth elements 02 engineering and technology 010502 geochemistry & geophysics 01 natural sciences complex mixtures 021108 energy Scandium critical elements coal combustion 0105 earth and related environmental sciences lcsh:Mineralogy fungi technology industry and agriculture Humidity Beneficiation Geology Yttrium respiratory system Geotechnical Engineering and Engineering Geology Pulp and paper industry chemistry Fly ash Environmental science Carbon |
Zdroj: | Minerals Volume 10 Issue 2 Minerals, Vol 10, Iss 2, p 105 (2020) |
ISSN: | 2075-163X |
DOI: | 10.3390/min10020105 |
Popis: | In this study, Central Appalachian coal-derived fly ashes from two power plants were beneficiated in a pilot-scale facility in order to produce a product with a relatively consistent concentration of rare earth elements (REE). The < 200-mesh final fly ash product was produced by removing the carbon- and Fe-rich particles prior to screening at 200 mesh (75 µ m). The Plant D fly ash had high concentrations of CaO and SO3, which were diminished through the two months when the ash was being beneficiated, representing a consequence of the heat, humidity, and excessive rainfall in the Kentucky summer. The high CaO and SO3 concentrations through the early runs likely contributed to the lower REE in the < 200-mesh products of those runs. Of the non-REE minor elements, Ba, V, Mn, Zn, and As showed the greatest between-run variations within the runs for each plant. The overall REE concentrations proved to be similar, both on a between-run basis for the individual fly ash sources and on a between-plant basis. Variations in fly ash quality will occur in larger-scale operations, so on-going attention to the fly ash quality and the response of the fly ash to beneficiation is necessary. Changes in the Plant D fly ash with time imply that both the freshness of the original ash and the length and conditions of its storage at the site of beneficiation could be factors in the quality and consistency of the processed fly ash. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |