Optimization of a Microfluidic Mixing Process for Gene Expression-Based Bio-dosimetry
Autor: | Douglas C. Montgomery, Ralf Lenigk, Shilpa Madhavan Shinde, Christine Orozco, Muriel Brengues, Frederic Zenhausern |
---|---|
Rok vydání: | 2011 |
Předmět: |
Engineering
business.industry medicine.medical_treatment Microfluidics Process (computing) Radiation imaging computer.software_genre Industrial and Manufacturing Engineering Article Radiation therapy medicine Dosimetry Data mining Safety Risk Reliability and Quality business computer Biomedical engineering |
Zdroj: | Quality engineering. 23(1) |
ISSN: | 0898-2112 |
Popis: | In recent decades advances in radiation imaging and radiation therapy have led to a dramatic increase in the number of people exposed to radiation. Consequently, there is a clear need for personalized biodosimetry diagnostics in order to monitor the dose of radiation received and adapt it to each patient depending on their sensitivity to radiation exposure (Hall E.J. and Brenner D. J., 2008). Similarly, after a large-scale radiological event such as a dirty bomb attack, there will be a major need to assess, within a few days the radiation doses received by tens of thousands of individuals. Current high throughput devices can handle only a few hundred individuals per day. Hence there is a great need for a very fast self-contained non-invasive biodosimetric device based on a rapid blood test.This paper presents a case study where regression methods and designed experiments are used to arrive at the optimal settings for various factors that impact the kinetics in a biodosimetric device. We use ridge regression to initially identify a set of potentially important variables in the mixing process which is one of the critical sub systems of the device. This was followed by a series of designed experiments to arrive at the optimal setting of the significant microfluidic cartridge and piezoelectric disk (PZT) (D. Sadler, F. Zenhausern, U.S. Patent 6,986,601; Lee, S. Y., Ko, B., Yang, W., 2005) related factors. This statistical approach has been utilized to study the microfluidic mixing to mix water and dye mixtures of 70 μl volume. The outcome of the statistical design, experimentation and analysis was then exploited for optimizing the design, fabrication and assembly of the microfluidic devices. As a result of the experiments that were performed, the system was fine tuned and the mixing time was reduced from 5.5 minutes to 2 minutes. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |