A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies

Autor: Vanessa Lleras, Saber Amdouni, Patrick Hild, Maher Moakher, Yves Renard
Přispěvatelé: Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Université de Bourgogne (UB)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Ecole Nationale d'Ingénieurs de Tunis (ENIT), Université de Tunis El Manar (UTM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2012
Předmět:
Zdroj: ESAIM: Mathematical Modelling and Numerical Analysis
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2012, pp.813-839. ⟨10.1051/m2an/2011072⟩
ISSN: 1290-3841
0764-583X
DOI: 10.1051/m2an/2011072
Popis: The purpose of this paper is to provide ap riorierror estimates on the approximation of contact conditions in the framework of the eXtended Finite-Element Method (XFEM) for two dimen- sional elastic bodies. This method allows to perform finite-element computations on cracked domains by using meshes of the non-cracked domain. We consider a stabilized Lagrange multiplier method whose particularity is that no discrete inf-sup condition is needed in the convergence analysis. The contact condition is prescribed on the crack with a discrete multiplier which is the trace on the crack of a finite- element method on the non-cracked domain, avoiding the definition of a specific mesh of the crack. Additionally, we present numerical experiments which confirm the efficiency of the proposed method.
Databáze: OpenAIRE