A BVMF-B algorithm for nonconvex nonlinear regularized decomposition of spectral x-ray projection images

Autor: Barbara Nicolas, Mai Quyen Pham, Nicolas Ducros
Přispěvatelé: GIPSA - Signal Images Physique (GIPSA-SIGMAPHY), Département Images et Signal (GIPSA-DIS), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Imagerie Ultrasonore, ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011), ANR-11-INBS-0006,FLI,France Life Imaging(2011)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: SPIE Medical Imaging
SPIE Medical Imaging, Aug 2017, Orlando, Floride, United States. ⟨10.1117/12.2255656⟩
DOI: 10.1117/12.2255656⟩
Popis: Spectral computed tomography (CT) exploits the measurements obtained by a photon counting detector to reconstruct the chemical composition of an object. In particular, spectral CT has shown a very good ability to image K-edge contrast agent. Spectral CT is an inverse problem that can be addressed solving two subproblems, namely the basis material decomposition (BMD) problem and the tomographic reconstruction problem. In this work, we focus on the BMD problem, which is ill-posed and nonlinear. The BDM problem is classically either linearized, which enables reconstruction based on compressed sensing methods, or nonlinearly solved with no explicit regularization scheme. In a previous communication, we proposed a nonlinear regularized Gauss-Newton (GN) algorithm.1 However, this algorithm can only be applied to convex regularization functionals. In particular, the ep (p < 1) norm or the `0 quasi-norm, which are known to provider sparse solutions, cannot be considered. In order to better promote the sparsity of contrast agent images, we propose a nonlinear reconstruction framework that can handle nonconvex regularization terms. In particular, the e1/e2 norm ratio is considered.2 The problem is solved iteratively using the block variable metric forward-backward (BVMF-B) algorithm,3 which can also enforce the positivity of the material images. The proposed method is validated on numerical data simulated in a thorax phantom made of soft tissue, bone and gadolinium, which is scanned with a 90-kV x-ray tube and a 3-bin photon counting detector.
Databáze: OpenAIRE