Mapping spaces in quasi-categories
Autor: | David I. Spivak, Daniel Dugger |
---|---|
Rok vydání: | 2011 |
Předmět: |
Pure mathematics
55U40 (Primary) 18G30 (Secondary) 18B99 (Secondary) homotopy function complex 18B99 Joyal model structure Mathematics::Algebraic Topology quasi-category 18G30 Mathematics::K-Theory and Homology Mathematics::Category Theory FOS: Mathematics Algebraic Topology (math.AT) Category Theory (math.CT) Mathematics - Algebraic Topology GEOM Equivalence (formal languages) Mathematics Homotopy simplicial category Mathematics - Category Theory mapping space infinity category Quasi-category 55U40 Geometry and Topology Dwyer–Kan |
Zdroj: | Algebr. Geom. Topol. 11, no. 1 (2011), 263-325 |
ISSN: | 1472-2739 1472-2747 |
Popis: | We apply the Dwyer–Kan theory of homotopy function complexes in model categories to the study of mapping spaces in quasi-categories. Using this, together with our work on rigidification from [Alg. Geom. Topol. 11 (2011) 225–261], we give a streamlined proof of the Quillen equivalence between quasi-categories and simplicial categories. Some useful material about relative mapping spaces in quasi-categories is developed along the way. |
Databáze: | OpenAIRE |
Externí odkaz: |