Strigolactone Biosynthesis in Medicago truncatula and Rice Requires the Symbiotic GRAS-Type Transcription Factors NSP1 and NSP2
Autor: | Alessandra Lillo, Erik Limpens, René Geurts, Kerstin Kaufmann, Muhammad Jamil, Tatsiana Charnikhova, Wouter Kohlen, Marijke Hartog, Harro J. Bouwmeester, Wei Liu, Rik Op den Camp, Wei-Cai Yang, Ton Bisseling, Guido J. E. J. Hooiveld, Cezary Smaczniak, Sergey Ivanov |
---|---|
Rok vydání: | 2011 |
Předmět: |
lotus-japonicus
phosphate deficiency viruses Mutant Plant Science Plant Root Nodulation Plant Roots Nod factor Lactones Voeding Metabolisme en Genomica Plant Growth Regulators Gene Expression Regulation Plant Laboratorium voor Plantenfysiologie Research Articles Phylogeny Oligonucleotide Array Sequence Analysis Plant Proteins Genetics EPS-1 biology food and beverages virus diseases Metabolism and Genomics Medicago truncatula PRI Bioscience Phenotype Metabolisme en Genomica Rhizobium Nutrition Metabolism and Genomics Laboratory of Molecular Biology Sesquiterpenes Laboratory of Plant Physiology Signal Transduction quality assessment Molecular Sequence Data Lotus japonicus Down-Regulation Strigolactone arbuscular mycorrhizal fungi Voeding Botany Laboratorium voor Moleculaire Biologie affymetrix genechip data Amino Acid Sequence Symbiosis Gene Nutrition VLAG germination stimulants Oryza sativa Gene Expression Profiling fungi Oryza Cell Biology biochemical phenomena metabolism and nutrition biology.organism_classification Carotenoids transduction pathway red-clover Mutation tiller bud outgrowth parasitic plants Sinorhizobium meliloti Transcription Factors |
Zdroj: | The Plant Cell, 23(10), 3853-3865 The Plant Cell 23 (2011) 10 |
ISSN: | 1532-298X 1040-4651 |
Popis: | Legume GRAS (GAI, RGA, SCR)-type transcription factors NODULATION SIGNALING PATHWAY1 (NSP1) and NSP2 are essential for rhizobium Nod factor-induced nodulation. Both proteins are considered to be Nod factor response factors regulating gene expression after symbiotic signaling. However, legume NSP1 and NSP2 can be functionally replaced by nonlegume orthologs, including rice (Oryza sativa) NSP1 and NSP2, indicating that both proteins are functionally conserved in higher plants. Here, we show that NSP1 and NSP2 are indispensable for strigolactone (SL) biosynthesis in the legume Medicago truncatula and in rice. Mutant nsp1 plants do not produce SLs, whereas in M. truncatula, NSP2 is essential for conversion of orobanchol into didehydro-orobanchol, which is the main SL produced by this species. The disturbed SL biosynthesis in nsp1 nsp2 mutant backgrounds correlates with reduced expression of DWARF27, a gene essential for SL biosynthesis. Rice and M. truncatula represent distinct phylogenetic lineages that split approximately 150 million years ago. Therefore, we conclude that regulation of SL biosynthesis by NSP1 and NSP2 is an ancestral function conserved in higher plants. NSP1 and NSP2 are single-copy genes in legumes, which implies that both proteins fulfill dual regulatory functions to control downstream targets after rhizobium-induced signaling as well as SL biosynthesis in nonsymbiotic conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |