Fine structure of the zeros of orthogonal polynomials, I. A tale of two pictures

Autor: Simon, Barry
Jazyk: angličtina
Rok vydání: 2006
Předmět:
Popis: Mhaskar-Saff found a kind of universal behavior for the bulk structure of the zeros of orthogonal polynomials for large $n$. Motivated by two plots, we look at the finer structure for the case of random Verblunsky coefficients and for what we call the BLS condition: $\alpha_n = Cb^n + O((b\Delta)^n)$. In the former case, we describe results of Stoiciu. In the latter case, we prove asymptotically equal spacing for the bulk of zeros.
Comment: Keywords: orthogonal polynomials, Jacobi matrices, CMV matrices
Databáze: OpenAIRE