Fine structure of the zeros of orthogonal polynomials, I. A tale of two pictures
Autor: | Simon, Barry |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2006 |
Předmět: | |
Popis: | Mhaskar-Saff found a kind of universal behavior for the bulk structure of the zeros of orthogonal polynomials for large $n$. Motivated by two plots, we look at the finer structure for the case of random Verblunsky coefficients and for what we call the BLS condition: $\alpha_n = Cb^n + O((b\Delta)^n)$. In the former case, we describe results of Stoiciu. In the latter case, we prove asymptotically equal spacing for the bulk of zeros. Comment: Keywords: orthogonal polynomials, Jacobi matrices, CMV matrices |
Databáze: | OpenAIRE |
Externí odkaz: |