SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution
Autor: | Cassius Puodzius, Lamine Noureddine, Olivier Zendra, Annelie Heuser |
---|---|
Přispěvatelé: | Diversity-centric Software Engineering (DiverSe), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-LANGAGE ET GÉNIE LOGICIEL (IRISA-D4), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Embedded Security and Cryptography / Sécurité cryptographie embarquée (EMSEC), SYSTÈMES LARGE ÉCHELLE (IRISA-D1), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Features combination
Similarity (geometry) Computer science 0211 other engineering and technologies 02 engineering and technology Packers computer.software_genre Novelty detection Clustering [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] 0202 electrical engineering electronic engineering information engineering [INFO]Computer Science [cs] Malware analysis Cluster analysis Incremental learning 021110 strategic defence & security studies Malware obfuscation 020206 networking & telecommunications Classification Malware Pairwise comparison Data mining computer Classifier (UML) |
Zdroj: | CODASPY '21-11th ACM Conference on Data and Application Security and Privacy CODASPY '21-11th ACM Conference on Data and Application Security and Privacy, Apr 2021, Virtual Event, United States. pp.1-12, ⟨10.1145/3422337.3447848⟩ CODASPY |
DOI: | 10.1145/3422337.3447848⟩ |
Popis: | International audience; Packers are widespread tools used by malware authors to hinder static malware detection and analysis. Identifying the packer used to pack a malware is essential to properly unpack and analyze the malware, be it manually or automatically. While many well-known packers are used, there is a growing trend for new custom packers that make malware analysis and detection harder. Research works have been very effective in identifying known packers or their variants, with signature-based, supervised machine learning or similarity-based techniques. However, identifying new packer classes remains an open problem. This paper presents a self-evolving packer classifier that provides an effective, incremental, and robust solution to cope with the rapid evolution of packers. We propose a composite pairwise distance metric combining different types of packer features. We derive an incremental clustering approach able to identify both (variants of) known packer classes and new ones, as well as to update clusters automatically and efficiently. Our system thus continuously enhances, integrates, adapts and evolves packer knowledge. Moreover, to optimize post clustering packer processing costs, we introduce a new post clustering strategy for selecting small subsets of relevant samples from the clusters. Our approach effectiveness and time-resilience are assessed with: 1) a real-world malware feed dataset composed of 16k packed binaries, comprising 29 unique packers, and 2) a synthetic dataset composed of 19k manually crafted packed binaries, comprising 31 unique packers (including custom ones). |
Databáze: | OpenAIRE |
Externí odkaz: |