The Effect of α7nAChR Signaling on T Cells and Macrophages and Their Clinical Implication in the Treatment of Rheumatic Diseases

Autor: Opeyemi Joshua Olatunji, Jian Zuo, Yi-Jin Wu, Sa-sa Zhang, Shu Pan, Qin Yin, Xiu-Ping Cheng
Rok vydání: 2021
Předmět:
Zdroj: Neurochemical research. 47(3)
ISSN: 1573-6903
Popis: Rheumatoid arthritis (RA) is one of the most common autoimmune disease and until now, the etiology and pathogenesis of RA is not fully understood, although dysregulation of immune cells is one of the leading cause of RA-related pathological changes. Based on current understanding, the priority of anti-rheumatic treatments is to restore immune homeostasis. There are several anti-rheumatic drugs with immunomodulatory effects available nowadays, but most of them have obvious safety or efficacy shortcomings. Therefore, the development of novel anti-rheumatic drugs is still in urgently needed. Cholinergic anti-inflammatory pathway (CAP) has been identified as an important aspect of the so-called neuro-immune regulation feedback, and the interaction between acetylcholine and alpha 7 nicotinic acetylcholine receptor (α7nAChR) serves as the foundation for this signaling. Consistent to its immunomodulatory functions, α7nAChR is extensively expressed by immune cells. Accordingly, CAP activation greatly affects the differentiation and function of α7nAChR-expressing immune cells. As a result, targeting α7nAChR will bring profound therapeutic impacts on the treatment of inflammatory diseases like RA. RA is widely recognized as a CD4+ T cells-driven disease. As a major component of innate immunity, macrophages also significantly contribute to RA-related immune abnormalities. Theoretically, manipulation of CAP in immune cells is a feasible way to treat RA. In this review, we summarized the roles of different T cells and macrophages subsets in the occurrence and progression of RA, and highlighted the immune consequences of CAP activation in these cells under RA circumstances. The in-depth discussion is supposed to inspire the development of novel cell-specific CAP-targeting anti-rheumatic regimens.
Databáze: OpenAIRE