Popis: |
The interaction between a turbulent boundary layer flow and compliant surfaces is investigated experimentally. Three viscoelastic coatings with different material stiffnesses are used to identify the general surface response to the turbulent flow conditions. For the softest coating, the global force measurements show two obvious regimes of interaction with an indicated transition at $U_b/C_t\sim 3.5$ , where $U_b$ is the bulk flow velocity and $C_t$ is the coating shear velocity. The one-way coupled regime shows friction values comparable to those of the rigid wall, while the two-way coupled regime indicate a significant increase in fluid friction. Within the one-way coupled regime for $U_b/C_t>1.2$ , the flow measurements show a low level of two-way coupling represented by the change of the velocity profile as well as the increase in the Reynolds stresses in the near-wall region. This is supported by the surface deformation measurements. Initially, the turbulent flow structures induce only an imprint on the coating surface, while a change in surface response occurs when the surface wave propagation velocity $c_w$ equals the shear wave velocity of the coating $C_t$ (i.e. $c_w/C_t\sim 1$ ). Above $U_b/C_t>1.2$ , a growth in wavelength is observed with increasing flow velocity, most probably due to the surface wave formation generated downstream the pressure features of the flow. The surface response is stable and correlates with the high-intensity turbulent pressure fluctuations in the turbulent boundary layer, with a wave propagation velocity $c_w\sim 0.7\unicode{x2013}0.8$ $U_b$ . Within the two-way coupled regime, additional fluid motions and a downward shift in the logarithmic region of the velocity profile are observed due to substantial surface deformation and confirm the frictional drag increase. Another type of surface response is initiated by phase-lag instability in combination with surface undulations that start to protrude the viscous sublayer, where the propagation velocity of surface wave trains is $c_w\sim 0.17\unicode{x2013}0.18$ $U_b$ . |