Tumor progression locus 2/Cot is required for activation of extracellular regulated kinase in liver injury and toll-like receptor-induced TIMP-1 gene transcription in hepatic stellate cells in mice
Autor: | Maria J. Perugorria, Jelena Mann, Fiona Oakley, Jayashree Bagchi Chakraborty, Dimitra Vyrla, Lindsay B. Murphy, Nicola Fullard, Caroline L. Wilson, Derek A. Mann |
---|---|
Rok vydání: | 2013 |
Předmět: |
Liver Cirrhosis
Male MAPK/ERK pathway Transcription Genetic Kupffer Cells MAP Kinase Signaling System Mice 03 medical and health sciences 0302 clinical medicine Fibrosis Proto-Oncogene Proteins Hepatic Stellate Cells medicine Animals Cells Cultured 030304 developmental biology Mice Knockout Liver injury 0303 health sciences Toll-like receptor Tissue Inhibitor of Metalloproteinase-1 Hepatology MAP kinase kinase kinase business.industry Macrophages TLR9 MAP Kinase Kinase Kinases medicine.disease 3. Good health Toll-Like Receptor 4 Toll-Like Receptor 9 Immunology Hepatocytes Cancer research TLR4 Hepatic stellate cell Cytokines 030211 gastroenterology & hepatology business |
Zdroj: | Hepatology. 57:1238-1249 |
ISSN: | 0270-9139 |
DOI: | 10.1002/hep.26108 |
Popis: | Toll-like receptors (TLRs) function as key regulators of liver fibrosis and are able to modulate the fibrogenic actions of nonparenchymal liver cells. The fibrogenic signaling events downstream of TLRs on Kupffer cells (KCs) and hepatic stellate cells (HSCs) are poorly defined. Here, we describe the MAP3K tumor progression locus 2 (Tpl2) as being important for the activation of extracellular regulated kinase (ERK) signaling in KCs and HSCs responding to stimulation of TLR4 and TLR9. KCs lacking Tpl2 display defects with TLR induction of cytokines interleukin (IL)-1β, IL-10, and IL-23. tpl2−/− HSCs were unable to increase expression of fibrogenic genes IL-1β and tissue inhibitor of metalloproteinase 1 (TIMP-1), with the latter being the result of defective stimulation of TIMP-1 promoter activity by TLRs. To determine the in vivo relevance of Tpl2 signaling in liver fibrosis, we compared the fibrogenic responses of wild-type (WT) and tpl2−/− mice in three distinct models of chronic liver injury. In the carbon tetrachloride and methionine-choline–deficient diet models, we observed a significant reduction in fibrosis in mice lacking Tpl2, compared to WT controls. However, in the bile duct ligation model, there was no effect of tpl2 deletion, which may reflect a lesser role for HSCs in wounding response to biliary injury. Conclusion: We conclude that Tpl2 is an important signal transducer for TLR activation of gene expression in KCs and HSCs by the ERK pathway and that suppression of its catalytic activity may be a route toward suppressing fibrosis caused by hepatocellular injuries. (HEPATOLOGY 2013) |
Databáze: | OpenAIRE |
Externí odkaz: |