Systems analysis of auxin transport in the Arabidopsis root apex

Autor: Miguel A. Perez-Amador, Michael Wilson, John A. Fozard, Darren M. Wells, Teodor Ghetiu, Christophe Godin, Malcolm J. Bennett, Ranjan Swarup, Teva Vernoux, Wenda Li, T. Charlie Hodgman, Simon P. Pearce, Lei Yu, Eric M. Kramer, John R. King, Jeonga Yun, Leah R. Band, Michael P. Pound, Jose M. Alonso, Hussein I. Hijazi, Tony P. Pridmore, Jaesung Oh, Andrew P. French
Přispěvatelé: Centre for Plant Integrative Biology, University of Nottingham, UK (UON), Institute of Molecular and Cellular Biology of Plants, Universitat Politecnica de Valencia (UPV), Department of Genetics, North Carolina State University [Raleigh] (NC State), University of North Carolina System (UNC)-University of North Carolina System (UNC), Physics Department, Bard College at Simon’s Rock, Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Reproduction et développement des plantes (RDP), École normale supérieure - Lyon (ENS Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Biotechnology and Biological Sciences Research Council (BBSRC), Engineering and Physical Sciences Research Council, Leverhulme Trust, Al-Tajir World of Islam Trust, National Science Foundation [DBI0820755], Royal Society, Wolfson Foundation, BBSRC Professorial Research Fellowship, Universitat Politècnica de València (UPV), Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), École normale supérieure de Lyon (ENS de Lyon)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Plant Cell
Plant Cell, American Society of Plant Biologists, 2014, 26 (3), pp.862-875. ⟨10.1105/tpc.113.119495⟩
The Plant cell
The Plant cell, American Society of Plant Biologists (ASPB), 2014, 26 (3), pp.862-875. ⟨10.1105/tpc.113.119495⟩
The Plant cell, 2014, 26 (3), pp.862-875. ⟨10.1105/tpc.113.119495⟩
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
ISSN: 1040-4651
1532-298X
DOI: 10.1105/tpc.113.119495⟩
Popis: [EN] Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the cellular scale is essential to understanding how these processes are controlled. In this study, we developed an auxin transport model based on actual root cell geometries and carrier subcellular localizations. We tested model predictions using the DII-VENUS auxin sensor in conjunction with state-of-the-art segmentation tools. Our study revealed that auxin efflux carriers alone cannot create the pattern of auxin distribution at the root tip and that AUX1/LAX influx carriers are also required. We observed that AUX1 in lateral root cap (LRC) and elongating epidermal cells greatly enhance auxin's shootward flux, with this flux being predominantly through the LRC, entering the epidermal cells only as they enter the elongation zone. We conclude that the nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues.
This project was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and Engineering and Physical Sciences Research Council funding to the Centre for Plant Integrative Biology. In addition, we acknowledge the support of the Leverhulme Trust (L. R. B.), the Al-Tajir World of Islam Trust (H. I. H.), National Science Foundation Grant DBI0820755 (J.M.A.), the Royal Society and Wolfson Foundation (J.R.K.), and BBSRC Professorial Research Fellowship funding (M.J.B.). We thank Antoine Larrieu, Caroline Howells, and Edward Venison for assistance in generation of the AUX1:VENUS line.
Databáze: OpenAIRE