Přispěvatelé: |
Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), ANR-16-CE40-0008,Foliage,Feuilletages et géométrie algébrique(2016), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) |
Popis: |
Given a (singular, codimension 1) holomorphic foliation F on a complex projective manifold X, we study the group PsAut(X, F) of pseudo-automorphisms of X which preserve F ; more precisely, we seek sufficient conditions for a finite index subgroup of PsAut(X, F) to fix all leaves of F. It turns out that if F admits a (possibly degenerate) transverse hyperbolic structure , then the property is satisfied; furthermore, in this setting we prove that all entire curves are algebraically degenerate. We prove the same result in the more general setting of transversely projective foliations, under the additional assumptions of non-negative Kodaira dimension and that for no generically finite morphism f : X $\rightarrow$ X the foliation f*F is defined by a closed rational 1-form. |